2015年湖南省高考数学试题及答案理科【解析版】
f2015年湖南省高考数学试卷(理科)
参考答案与试题解析
一、选择题,共10小题,每小题5分,共50分
1.(5分)(2015湖南)已知
1i(i为虚
数单位),则复数z()
A1iB1iC1i
.
.
.
D1i.
考复数代数形式的乘除运算.菁优网版权所有
点:
专数系的扩充和复数.
题:
分由条件利用两个复数代数形式的乘除法法
析:则,求得z的值.
解解:∵已知
答:
∴z
1i(i为虚数单位),1i,
故选:D.点本题主要考查两个复数代数形式的乘除法评:法则的应用,属于基础题.
2
f3
f点本题考查充要条件的判断与应用,集合的交集评:的求法,基本知识的应用.
3.(5分)(2015湖南)执行如图所示的程序框图,如果输入
3,则输出的S()
A
B
C
D
.
.
.
.
考
程序框图.菁优网版权所有
点:
分列出循环过程中S与i的数值,满足判断
析:框的条件即可结束循环.
解解:判断前i1,
3,s0,答:第1次循环,S,i2,
4
f第2次循环,S第3次循环,S
,i3,,i4,
此时,i>
,满足判断框的条件,结束循环,输出结果:
S
故选:B点本题考查循环框图的应用,注意判断框的
评:条件的应用,考查计算能力
4.(5分)(2015湖南)若变量x、y满足约束
条件
,则z3xy的最小值为()
A7B1C1
D2
.
.
.
.
考简单线性规划.菁优网版权所有
点:专不等式的解法及应用.题:分由约束条件作出可行域,由图得到最优解,析:求出最优解的坐标,数形结合得答案.
5
f解解:由约束条件答:
作出可行域如图,
由图可知,最优解为A,
联立
,解得C(0,1).由
解得
A(2,1),由
,解得B(1,1)
∴z3xy的最小值为3×(2)17.故选:A.
点本题考查了简单的线性规划,考查了数形结评:合的解题思想方法,是中档题.易错点是图
形中的B点.
5.(5分)(2015湖南)设函数f(x)l
(1x)
l
(1x),则f(x)是()
A.奇函数,且在(0,1)B.奇函数,且在(0,1)
上是增函数
上是减函数
6
fC.偶函数,且在(0,1)D.偶函数,且在(0,1)
上是增函数
上是减函数
考利用导数研究函数的单调性.菁优网版权所有
点:专导数的综合应用.题:分求出好的定义域,判断函数的奇偶性,以及函析:数的单调性推出结果即可.解解:函数f(x)l
(1x)l
(1x),函数答:的定义域为(1,1),
函数f(x)l
(1x)l
r