全球旧事资料 分类
龙源期刊网httpwwwqika
comc
圆锥曲线中与斜率相关的定点、定值问题探讨
作者:莫成立来源:《数理化学习高一二版》2012年第11期
圆锥曲线中的定点、定值问题是高考的热点笔者最近遇到一些与斜率相关的定点、定值问题,并对一般情形进行研究,可以得到一般性结论,与各位共赏
定理1:已知点A(x0,y0)是抛物线y22px上的定点,直线l(不过A点)与抛物线交于M、N两点(1)若kAMkANc(常数),则直线l斜率为定值;(2)若kAMkANc(常数),直线l恒过定点证明:(1)直线l斜率显然不为0,故设为xtym,M(x1,y1),N(x2,y2)由y22pxttym
y22pty2pm0y1y22pt,y1y22pm,kAMkANy1y0x1x0y2y0x2x0
f龙源期刊网httpwwwqika
comc
2p(y1y22y0)y1y2y0(y1y2)y202p(2pt2y0)2pm2pty0y20c,即:4p2t4py02pmc2pty0cy20c,要斜率为定值,即要t2pmcy20c4py04p22py0c为定值,所以c0,ty0p(i)若A为原点,y00,此时直线l斜率不存在;(ii)若A为原点,y0≠0,此时直线l斜率kpy0(2)kAMkANy1y0x1x0y2y0x2x04p2
f龙源期刊网httpwwwqika
comc

2pm2pty0y20c即
2pmc2pty0ccy204p20可解得:
m2pty0ccy204p22mc,直线l方程为:
xty2pty0ccy204p22pc,
即2pt(cyy0c)cy204p22pcx0,恒过定点
(cy204p22pc,y0)
定理2:已知
A(x0,y0)
是椭圆
x2a2y2b21(ab0)上的定点,直线l(不过
A点)与椭圆交于M、N两点(1)若k点;(2)若
AMk
ANc常数,直线l恒过定
kAMkANc常数,直线l斜率为定值
证明:(1)若直线l斜率不存在,设
M(t,b1t2a2),N(
ft,b1t2a2)HT5,5”kAMkAN(b1t2a2y0)(b1t2a2y0)(tx0)2HTy20b2(1t2a2)(tx0)2b2(1x20a2)b
2(1t2a2)(tx0)2b2a2tx0tx0c,则b2a2tx0tx0cx00,cb2a2
龙源期刊网httpwwwqika
comc

f龙源期刊网httpwwwqika
comc
才满足若直线MN斜率存在,设为ykxm,M(x1,y1),N(x2,y2)b2x2a2y2a2b20ykxm
(a2k2b2)x22a2mkxa2m2a2b20
x1x22a2mka2k2b2,x1x2a2m2a2b2a2k2b2kAMkANy1y0x1x0y2y0x2x0(kx1my0)(kx2my0)x1x2x0(x1x2)x20a2b2k2m2b2a2k2y20b2y202my0b2a2m2a2b22a2mkx0b2x20a2k2x20
f龙源期刊网httpwwwqika
comc
a2b2k2m2b2k2(a2b2b2x20)b2y202my0b2
a2m2a2b22a2mkx0(a2b2a2y20)a2k2x20m2b2b2x20k2b2y202my0b2a2m22a2mkx0a2y20a2k2x20b2a2r
好听全球资料 返回顶部