全球旧事资料 分类
值.3解:1已知α为锐角,所以cosα≠0又由si
α-si
αcosα-2cosα=0得ta
α-ta
α-2=0,解得ta
α=2,或ta
α=-1由α为锐角,得ta
α=22∵ta
α=2,且α为锐角,∴cosα=525,si
α=55
322222
fπ13故si
α-=si
α-cosα322=51525-15-=51010
9.2012衡阳模拟函数fx=cos-+si
2
x
1求fx的最小正周期;
π-x,x∈R2
π210π2若fα=,α∈0,,求ta
α+的值.245
解:1fx=cos-+si
π-=si
+cos2222
xxxx
xπ=2si
+24
2π∴fx的最小正周期T==4π122102由fα=,5αα210得si
+cos=,22583∴1+si
α=∴si
α=55
π又α∈0,2
∴cosα=1-si
α=si
α3∴ta
α==cosα4π3ta
α+ta
+144π∴ta
α+===74π31-ta
αta
1-4410.已知si
α+cosα=π335πππ,α∈0,,si
β-=,β∈,445542
2
941-=255
1求si
2α和ta
2α的值;2求cosα+2β的值.92解:1由题意得si
α+cosα=,5
4
f94即1+si
2α=,∴si
2α=553π2又2α∈0,,∴cos2α=1-si
2α=,25si
2α4∴ta
2α==cos2α3ππππ2∵β∈,,β-∈0,,4442π4∴cosβ-=45πππ24于是si
2β-=2si
β-cosβ-=44425π24又si
2β-=-cos2β,∴cos2β=-4257π又2β∈,π,∴si
2β=2521+cos2α42又cosα==,25∴cosα=21π,si
α=α∈0,455
∴cosα+2β=cosαcos2β-si
αsi
2β=252457×--×525525
115=-25
5
fr
好听全球资料 返回顶部