全球旧事资料 分类
顶元素赋给一个指定的变量,此时指针无变化。队列:指允许在一端队尾进入插入,而在另一端队头进行删除的线性表。
用rear指针指向队尾,用fro
t指针指向队头元素的前一个位置。队列是“先进先出”FIFO或“后进后出”LILO的线性表。队列运算:1入队运算:从队尾插入一个元素2退队运算:从队头删除一个元素计算循环队列的元素个数:“尾指针减头指针”,若为负数,再加其容量即可。即当尾指针头指针0时尾指针头指针当尾指针头指针0时尾指针头指针容量计算栈的个数栈底栈顶116树与二叉树★★★★★1、树的基本概念树是一种简单的非线性结构,其所有元素之间具有明显的层次特性。在树结构中,每一个结点只有一个前件,称为父结点。没有前件的结点只有一个,称为树的根结点,简称树的根。每一个结点可以有多个后件,称为该结点的子结点。没有后件的结点称为叶子结点。在树结构中,一个结点所拥有的后件的个数称为该结点的度。来源:考试大所有结点中最大的度称为树的度。
f树的最大层次称为树的深度。
2、二叉树及其基本性质满足下列两个特点的树即为二叉树1非空二叉树只有一个根结点;2每一个结点最多有两棵子树,且分别称为该结点的左子树与右子树。
二叉树基本性质:★★★★性质1在二叉树的第k层上,最多有
个结点。
性质2深度为m的二叉树最多有个
个结点。
性质3在任意一棵二叉树中,度数为0的结点(即叶子结点)总比度为2的结点多一个。
性质4具有
个结点的二叉树,其深度至少为
,其中
表示取
的整数部分
3、满二叉树与完全二叉树满二叉树:除最后一层外,每一层上的所有结点都有两个子结点。来源:
完全二叉树:除最后一层外,每一层上的结点数均达到最大值;在最后一层上只缺少右边的若干结点。下图a表示的是满二叉树,下图b表示的是完全二叉树:
f4、二叉树的遍历★★★★二叉树的遍历是指不重复地访问二叉树中的所有结点。二叉树的遍历可以分为以下三种:1前序遍历DLR:若二叉树为空,则结束返回。否则:首先访问根结点,然后遍历左子树,最后遍历右子树;并且,在遍历左右子树时,仍然先访问根结点,然后遍历左子树,最后遍历右子树。2中序遍历LDR:若二叉树为空,则结束返回。否则:首先遍历左子树,然后访问根结点,最后遍历右子树;并且,在遍历左、右子树时,仍然先遍历左子树,然后访问根结点,最后遍历右子树。3后序遍历LRD:若二叉树为空,则结束返回。否则:首先遍r
好听全球资料 返回顶部