电机组在静电除尘器和烟气脱硫塔之间加装了烟气冷却器,利用烟气加热锅炉凝结水,其原理同低温省煤器一致。德国科隆Nideraussem1000MW级褐煤发电机组采用分隔烟道系统充分降低排烟温度,把低温省煤器加装在空气预热器的旁通烟道中,在烟气热量足够的前提下引入部分烟气到旁通烟道内加热锅炉给水。日本的常陆那珂电厂采用了水媒方式的管式GGH。烟气放热段的GGH布置在电气除尘器上游,烟气被循环水冷却后进入低温除尘器(烟气温度在90~100℃左右),烟气加热段的GGH布置在烟囱入口,由循环水加热烟气。烟气放热段的GGH的原理和低温省煤器一样。
低温省煤器尽管在国内和国外已经有运用业绩,但上述的例子中我们发现,在德国锅炉排烟温度较高,均达到170℃左右(这些锅炉燃用的是褐煤),而加装低温省煤器后排烟温度下降到100℃左右。日本的情况是锅炉设计排烟温度不高(125℃左右),经过低温省煤器后烟气温度可降低到85℃左右。22低温省煤器安装位置
由于低温省煤器的传热温差低,因此换热面积大,占地空间也较大,所以在加装低温省煤器时,需合理考虑其在锅炉现场的布置位置。221低温省煤器布置在除尘器的进口
日本的不少大型火电厂,如常陆那珂电厂(1000MW)和TomatoAtsuma电厂(700MW)等都有类似的布置。管式的GGH烟气放热段布置在空预器和除尘器之间。管式GGH将烟气温度降低到90℃左右,除尘器的飞灰比电阻可从1012Ωcm下降到1010Ωcm,这样可提高电气除尘器的运行收尘效率。低温省煤器布置在除尘器的进口,除尘器下游的烟气体积流量降低了约5%,因此其烟道、引风机、增压风机等的容量也可相应减少,降低了运行厂用电。据计算,每台机组节约引风机和增压风机厂用电共约500kW。需要指出的是除尘器和风机的选型仍应该考虑125℃低温省煤器未投运时的情况,
这种布置方式最大的风险是腐蚀。因为经过低温烟气换热器后的烟气温度已经在酸露点以下,除尘器、烟道、引风机、增压风机均存在腐蚀的风险。根据日本的有关技术资料,未经除尘器收尘的烟气中含有较多的碱性颗粒,可中和烟气中凝结的硫酸微滴,低温除尘器及其下游的设备并“不需要进行特别的防腐考虑”,而且日本的不少大机组运行低温除尘器也有良好的业绩,因此,这种布置方式应该是可行的。但是,对所谓的“不需要进行特别的防腐考虑”还有一些疑虑:(1)是不是仅仅依靠烟气中的碱性灰颗粒就能中和大部分SO2,而大大降低温烟气的腐蚀性?中和反应的彻底程度肯定与燃煤的特性有关(如含r