全球旧事资料 分类
这个结果表明,如果圆心O与P是确定的,那么PC与PD之积也是唯一确定的。以上是P在圆外的讨论现在再重新考虑P在圆内的情形,如下图,PCD是圆内的现,PAB是以P为中点的弦
则由相交弦定理有PAPBPA(2因为P是弦AB中点)PCPD连OP,OA,由垂径定理,ΔOPA是RTΔ由勾股定理有PA2OA2OP2,结合相交弦定理,便得到
f学习必备
欢迎下载
PAPBPA(2因为P是弦AB中点)PCPDOA2OP2
这个结果同样表明,当O与P是固定的时候PC与PD之积是定值以上是P在圆内的讨论当P在圆上时,过P任作一弦交圆于A(即弦AP),此时PO2OA20也是定值综上,我们可以把相交弦定理,切割线定理,割线定理,切线长定理统一起来,得到圆幂定理。圆幂定理:P是圆O所在平面上任意一点(可以在圆内,圆上,圆外),过点P任作一直线交圆O于A,B两点(A,B两点可以重合,也可以之一和P重合),圆O半径为r则我们有:PAPBPO2r2
由上面我们可以看到,当P点在圆内的时候,PO2r20,此时圆幂定理为
相交弦定理
当P在圆上的时候,PO2r20当P在圆外的时候,PO2r20此时圆幂定理为切割线定理,割线定理,或
切线长定理以下有很重要的概念和定理:根轴先来定义幂的概念:从一点A作一圆周上的任一割线,从A起到和圆周相交为止的两线段之积,称为点对于这圆周的幂对于已知两圆有等幂的点的轨迹,是一条垂直于连心线的直线。根轴的定义:两圆等幂点的轨迹是一条直线,这条直线称为两圆的根轴性质1若两圆相交,其根轴就是公共弦所在直线
f学习必备
欢迎下载
由于两圆交点对于两圆的幂都是0,所以它们位于根轴上,而根轴是直线,所以根轴是两交点的连线性质2若两圆相切,其根轴就是过两圆切点的公切线(即性质1的极限情况)性质3若三圆两两不同心,则其两两的根轴交于一点,或互相平行所交的这点称为根心证明:若三圆心共线,则两两圆的根轴均垂直于连心线,因此此时两两的根轴互相平行若三圆心不共线,则必成一三角形,因此两两的根轴必垂直于两两的连心线。如图,设CD与EF交于点O,连AO交圆分O2圆O3于B’B’’,则OAOBOEOFOCODOAOB其中前两式是点O对圆O2的幂,后二式是点O对圆O3的幂,中间是圆O对圆O1的幂进行转化由此B’与B’’重合,事实上它们就是点B(圆O2与圆O3的非A的交点),由此两两的根轴共点
圆幂定理是对于圆适用的定理,今使用圆幂定理对圆内接四边形判定方法的r
好听全球资料 返回顶部