基于模板匹配车牌识别技术的研究王宜政
1、研究背景汽车牌照自动识别模块是现代社会智能系统的重要组成部分,是图像处理和
模式识别技术研究的热点,具有非常广泛的应用1。车牌识别主要包括以下三个步骤:车牌区域定位、车牌字符分割、车牌字符识别。
本论文通过对采集的车牌图像进行灰度变换、边缘检测、腐蚀、平滑等过程来进行车牌图像预处理,并由此得到一种基于车牌颜色纹理特征的车牌定位方法,最终实现了车牌区域定位。车牌字符分割是为了方便后续对车牌字符进行匹配,从而对车牌进行识别。本论文采用了模板匹配的方法,对输出的字符图像和模板库里的模板进行匹配,以得到对应于车牌字符的具体信息。本论文还基于MATLAB进行了设计仿真实验,实验表明,该方案整体有效可行。基于模板匹配的车牌识别技术在其识别正确率、速度等方面具有独特的优势及广阔的应用前景。2、理论基础
车牌定位与字符识别技术是以计算机数字图像处理、模式识别等技术为基础,通过对原图像进行预处理及边缘检测等过程来实现对车牌区域的定位,然后对车牌区域进行图像裁剪、归一化、字符分割及保存,最后将分割得到的字符图像与模板库里的模板进行匹配识别,从而输出匹配结果。该流程如下图所示:
采集图像图像预处理定位车牌区域车牌图像处理
f字符分割字符识别输出结果(车辆牌照识别系统)车牌识别首先要正确地分割车牌区域,为此已经提出了很多方法:使用霍夫变换检测直线来定位车牌边界,进而获取车牌区域;使用灰度阈值分割、区域生长等方法进行区域分割;使用纹理特征分析技术检测车牌区域等。然而霍夫变换对图像噪声比较敏感,因此在检测车牌边界直线时,容易受到车牌变形或噪声等因素的影响,具有较大的误检测几率。灰度阈值分割、区域增长等方法则比霍夫直线检测方法稳定,但当图像中包含某些与车牌灰度非常相似的区域时,便不再适用了。同理,纹理特征分析方法在遇到与车牌纹理特征相近的区域或其他干扰时,车牌定位的正确率也会受到影响。因此仅采用单一的方法,难以达到实际应用的要求。如果进行车牌字符的定位和裁剪,则需要首先对输入的车牌图像进行预处理,以得到精确的车牌字符图像;然后将处理后的车牌看作由连续的字符块组成,并设定一个灰度阈值,如果超过该阈值,则认为有多个字符相连,需要对其进行切割,进而实现对车牌字符的分割;最后把分割的字符图片进行标准化并与模板库进行比对r