击,对整流器呈现电流源负载特性;其输出侧有滤波电容,可以减小输出电压纹波,对负载呈现电压源特性。利用Boost电路在斩波的同时,还实现功率因数校正的目标,包括如下两个方面:①控制电感电流,使输入电流正弦化,保证其功率因数接近于1,并使输入电流基波跟随输入电压相位。②当风速变化时,不可控整流得到的电压也在变化,而通过DCDC变流器的调节可以保持直流侧电压的稳定,使输出电压保持恒定。
26、给出双PWM背靠背方案。答:图412是背靠背双PWM变流器拓扑的结构图,发电机定子通过背靠背变流器和电网连
接。发电机侧PWM变流器通过调节定子侧的d轴和q轴电流,控制发电机的电磁转矩和定子的无功功率(无功功率设定值为0,使发电机运行在变速恒频状态,额定风速以下具有最大风能捕获功能;网侧PWM变流器通过调节网侧的d轴和q轴电流,保持直流侧电压稳定,实现有功功率和无功功率的解耦控制,控制流向电网的无功功率通常运行在单位功率因数状态。此外网侧变流器还要保证变流器输出的THD尽可能小,以提高注入电网的电能质量。
5
f图412背靠背双PWM变流器结构27、简述背靠背双PWM变流器结构的特点
答:背靠背双PWM变流器结构是目前直驱型风力发电系统中较常见的一种拓扑,国内外对其研究较多,主要集中在变流器建模、控制算法以及如何提高其故障穿越能力等方面。国内九洲电气股份有限公司的直驱型风力发电系统用兆瓦级功率变流器Wi
di
vertTMA(最大2MW)和合肥阳光电源有限公司的全功率风力发电机组用变流器如WGZOOOFP(2MW)即使用这种结构。这种拓扑的通用性较强,双PWM变流器主电路完全一样,控制电路和控制算法也非常相似;两侧变流器都使用基于DSP的数字化控制,采用矢量控制,控制方法灵活,具有四象限运行功能,可以实现对发电机调速和输送到电网电能的优良控制。28、试比较三级变换(不可控整流Boost逆变)与两级变换(双PWM变流器)的优缺点。
答:Boost电路是三级变换,双PWM变流器是两级变换,因而效率更高,但是全控型器件数量更多,同时发电机侧变流器矢量控制通常需要检测发电机转速等信息,控制电路较复杂,因而具有相对较高的成本;不可控整流Boost电路构成整流器,控制简单,实现相对容易,可靠性高,方便实现永磁同步发电机(PMSG的无速度传感器控制,从而节约了成本。综合性能、成本等因素,这两种拓扑各有优缺点,目前的使用都比较多。29、画出双馈感应式风力发电系统的结构。
答:
图413双馈感应式风力发电系r