方程和方程组
基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。3、解方程:求方程的解或方判断方程无解的过程叫做解方程。4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。二、一元方程1、一元一次方程(1)一元一次方程的标准形式:axb0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:axb(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。(4)一元一次方程有唯一的一个解。2、一元二次方程(1)一元二次方程的一般形式:axbxc0(其中x是未知数,a、b、c是已知
2
数,a≠0)(2)一元二次方程的解法:直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如没有要求,一般不用配方法。(4)一元二次方程的根的判别式:b4ac
2
当Δ>0时方程有两个不相等的实数根;当Δ0时方程有两个相等的实数根;当Δ0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:
2若x1x2是一元二次方程axbxc0的两个根,那么:x1x2
b,a
x1x2
ca
(6)以两个数x1x2为根的一元二次方程(二次项系数为1)是:
fx2x1x2xx1x20
三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。特殊方法:换元法。(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:
a1xb1yc1(a1a2b1b2c1c2不全为0)a2xb2yc2
解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。(2)三元一次方程组:解法:代入消元法和加减消元法4、二元二次方程组:(1)定义:由一个二元一次方程r