全球旧事资料 分类
美国工程院士黄锷博士于1998年提出的一种信号分析方法:重点是黄博士的具有创新性的经验模态分解(EmpiricalModeDecompositio
)即EMD法,它是一种自适应的数据处理或挖掘方法,非常适合非线性,非平稳时间序列的处理,本质上是对数据序列或信号的平稳化处理。EMD方法:EMD方法在理论上可以应用于任何类型的时间序列(信号)的分解,因而在处理非平稳及非线性数据上,比之前的平稳化方法更具有明显的优势。所以,EMD方法一经提出就在不同的工程领域得到了迅速有效的应用,例如用在海洋、大气、天体观测资料与地球物理记录分析等方面。该方法的关键是它能使复杂信号分解为有限个本征模函数(I
tri
sicModeFu
ctio
,简称IMF),所分解出来的各IMF分量包含了原信号的不同时间尺度的局部特征信号。EMD分解方法是基于以下假设条件:⑴数据至少有两个极值,一个最大值和一个最小值;⑵数据的局部时域特性是由极值点间的时间尺度唯一确定;⑶如果数据没有极值点但有拐点,则可以通过对数据微分一次或多次求得极值,然后再通过积分来获得分解结果。
经验模态分解的基本思想:将一个频率不规则的波化为多个单一频率的波残波的形式。原波形∑IMFs余波。
f这种方法的本质是通过数据的特征时间尺度来获得本征波动模式,然后分解数据。这种分解过程可以形象地称之为“筛选(sifti
g)”过程。分解过程是:找出原数据序列Xt)所有的极大值点并用三次样条插值函数拟合形成原数据的上包络线;同样,找出所有的极小值点,并将所有的极小值点通过三次样条插值函数拟合形成数据的下包络线,上包络线和下包络线的均值记作ml(其实,有学者将平均值改用中位值,可能更合理,因为是非平稳时间序列),将原数据序列Xt)减去该平均包络ml,得到一个新的数据序列hl,:Xtmlhl由原数据减去包络平均后的新数据,若还存在负的局部极大值和正的局部极小值,说明这还不是一个本征模函数,需要继续进行“筛选”。如下图示意:
f最后4个低频IMF函数序列:
上图中的IMF1IMF3叠合起来,就基本可以重构出沪指的走势:基本与股指一致,类似与一根均线。
从上面的分解到重构的过程看:其实就是个减法到加法的过程,减法求异,剥离出频率(周期)大致相同的IMF,而加法求同,回到原波形。余波其实是个趋势线,即频率极低(周期很长)的波,可以看成是个基底,其它IMF都建筑在它之上。
f有意思的是,筛选出的本征模函数IMF(包括余波)可以代表实在的物理意义,即其震动模式必然地r
好听全球资料 返回顶部