于生物学中所说的生物神经网络系统而言的,它提出的目的在于,用一定的简单的数学模型来对生物神经网络结构进行描述,并在一定的算法指导下使其能够在某种程度上模拟生
f物神经网络所具有的智能行为,解决用传统算法所不能胜任的智能信息处理的问题。
ANN是一个并列分布处理的结构,它由处理单元及称为连接单元的信号通道互连而成。处理单元具有局部内存,并可以完成局部操作。每个处理单元有一个单一的输出连接,这个输出可以根据需要被分成希望个数的许多并行连接,这些连接都输出相同的信号,即相应处理单元的信号大小不因分支的多少而变化。处理单元的输出信号,可以是任意需要的数学模型,每个处理单元中进行的操作必须是完全局部的,也就是说,它必须仅仅依赖于经过输入连接到达处理单元的所有输入信号的当前值和存储在处理单元局部内存中的值。人工神经网络具有学习的能力,它可以根据所在的环境去改变它的行为,即可以接受用户提交的样本集合,依照系统给定的算法,不断修正用来确定系统行为的神经元之间连接的强度,而且在网络的基本构成确定后,这种改变是根据其接受的样本集合自然进行的。在学习过程中,ANN不断地接受从样本集合中提取的该集合所蕴涵的基本知识,并将其以神经元之间连接权重的形式存放于系统中。
(四)数值分析方法。数值分析法是根据字段具体的数据值的分布情况、出现频率等对字段进行分析,从而发现审计线索的一种数据处理方法。这种方法从“微观”角度对电子数据进行分
f析,它在使用时不用考虑具体的业务,对分析出的可疑数据,再结合具体的业务进行审计判断,从而发现审计线索。相对于其他方法,这种审计数据处理方法易于发现被审计数据中隐藏的信息。
常用的数值分析方法主要有重号分析、断号分析、Be
ford法则分析,这些数字方法已经被国际著名审计软件ACL、IDEA等采用。重号分析是用来计算某个字段中相同数值的重复次数;断号分析是对统计字段的数据记录是否连续进行分析,如果有断点,则统计出来,否则只列出统计字段的最大值和最小值,它主要针对整型和日期型数据。班福法则(Be
ford’sLaw)认为数据库中的数据与数据顺序必然遵循某种预定的形式,即符合班福分布,若某个系列的数据分布与班福分布不符,就可能存在发生的错误、潜在的舞弊或其他违规行为。
作者:应里孟
作者单位:浙江温州大学城市学院
fr