相关矩阵可以确定是否适合进行因子分析。③确定因子个数:可根据实际情况事先假定因子个数,也可以按照特征根大于1的准则或碎石准则来确定因子个数。④提取因子:可以根据需要选择合适的因子提取方法,如主成分方法、加权最小平方法、极大似然法等。⑤因子旋转:由于初始因子综合性太强,难以找出实际意义,因此一般都需要对因子进行旋转常用的旋转方法有正交旋转、斜交旋转等,以便于对因子结构进行合理解释。
f⑥解释因子结构:可以根据实际情况及负载大小对因子进行具体解释。⑦计算因子得分:可以利用公共因子来做进一步的研究,如聚类分析、评价等。
而验证性因子分析主要有以下六个步骤:①定义因子模型:包括选择因子个数和定义因子载荷。因子载荷可以事先定为0、或者其它自由变化的常数,或者在一定的约束条件下变化的数比如与另一载荷相等。②收集观测值:根据研究目的收集观测值。③获得相关系数矩阵:根据原始资料数据获得变量协方差阵。④拟合模型:这里需要选择一种方法如极大似然估计、渐进分布自由估计等来估计自由变化的因子载荷。⑤评价模型:当因子模型能够拟合数据时,因子载荷的选择要使模型暗含的相关矩阵与实际观测矩阵之间的差异最小。常用的统计参数有:卡方拟合指数x2、比较拟合指数CFI、拟合优度指数GFI和估计误差均方根RMSEA。根据Be
tler1990的建议标准,x2DF≤30、CFI≥090、GFI≥085、RMSE≤005,则表明该模型的拟合程度是可接受的。⑥修正模型:如果模型拟合效果不佳,应根据理论分析修正或重新限定约束关系,对模型进行修正,以得到最优模型。
5主要应用范围不同探索性因子分析主要应用于三个方面:①寻求基本结构,解决多元统计分析中的变量间强相关问题;②数据化简;③发展测量量表。验证性因子分析允许研究者将观察变量依据理论或先前假设构成测量模式,然后评价此因子结构和该理论界定的样本资料间符合的程度。因此,主要应用于以下三个方面:①验证量表的维度或面向性dime
sio
ality,或者称因子结构,决定最有效因子结构;②验证因子的阶层关系;③评估量表的信度和效度。
6探索性因子分析和验证性因子分析的正确用法从上述分析可以看出,探索性因子分析和验证性因子分析是因子分析的两个不可分割的重要组成部分,在管理研究的实际应用中,两者不能截然分开,只有结合运用,才能相得益彰,使研究更有深度。A
derso
,J.C.,Gerbi
,D.W建议,在发展理论的过程中,首先应通过探索性因子分析建r