全球旧事资料 分类
数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
§15不等式的应用
1.排序不等式(又称排序原理)设有两个有序数组a1a2a
及b1b2b
则a1b1a2b2a
b
(同序和)
a1bj1a2bj2a
bj
(乱序和)
a1b
a2b
1a
b1(逆序和)
其中j1j2j
是1,2,…,
的任一排列当且仅当a1a2a

b1b2b
时等号(对任一排列j1j2j
)成立
2.应用排序不等式可证明“平均不等式”:设有
个正数a1a2a
的算术平均数和几何平均数分别是
A

a1a2a
和G
a1a2a

此外,还有调和平均数(在光学及电路分析中要用到
H

111a1a2a


和平方平均(在统计学及误差分析中用到)
Q

22a12a2a

这四个平均值有以下关系H
G
A
Q

3.应用算术平均数几何平均数不等式,可用来证明下述重要不等式柯西(Cavchy)不等式:设a1、a2、a3,…,a
是任意实数,则
2222a1b1a2b2a
b
2a12a2a
b12b2b

等号当且仅当bikaik为常数,i12
时成立4.利用排序不等式还可证明下述重要不等式切比雪夫不等式:若a1a2a
,b1b2b
,则
a1b1a2b2a
b
a1a2a
b1b2b


数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
f数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
例题讲解
1.abc0求证:ababbcbccaca6abc
2.abc0,求证:abcabc
abc
abc3

3.:abcR求证abc
a2b2b2c2c2a2a3b3c32c2a2bbccaab
4.设a1a2a
N,且各不相同,
求证:1
12
13
1aa3aa122
2
23
2
数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
f数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
5.利用基本不等式证明a2b2c2abbcca
6.已知ab1ab0求证:ab
44
18
7.利用排序不等式证明G
A

8.证明:对于任意正整数R,有1
1
1
11
1
数学教育网httpwwwqyjzsc
中小学数学试题、教案、课件、论文
f数学教育网httpwwwqyjzsc
中小学数学试题、教案、r
好听全球资料 返回顶部