全球旧事资料 分类
单元质量测试三
时间:120分钟
满分:150分
第Ⅰ卷选择题,共60分
一、选择题本大题共12小题,每小题5分,共60分
1.函数fx=1-2si
2x2的最小正周期为

A.2πB.πC.π2D.4π
答案A解析fx=1-2si
2x2=cosx,最小正周期T=2π,故选A.
2.已知si
θ0,ta
θ0,则1-si
2θ化简的结果为A.cosθB.-cosθC.±cosθD.以上都不对答案B
解析由已知可判断出θ是第三象限角,所以1-si
2θ=cosθ=-cosθ.故选B.
3.2018福建4月质检已知向量→AB=11,A→C=23,则下列向量与B→C垂直的是
A.a=36B.b=8,-6C.c=68D.d=-63答案D
解析B→C=A→C-A→B=12,因为12-63=1×-6+2×3=0.故选D.4.2018长沙统考已知a,b为单位向量,且a⊥a+2b,则向量a与b的夹角为A.30°B.60°C.120°D.150°答案C解析由题意,aa+2b=a2+2ab=a2+2abcos〈a,b〉=1+2cos〈a,
b〉=0,所以cos〈a,b〉=-12,又0°≤〈a,b〉≤180°,所以〈a,b〉=120°.故选
C.5.2018长春调研在△ABC中,角A,B,C的对边分别为a,b,c,若2bcosC-2ccosB
=a,且B=2C,则△ABC的形状是A.等腰直角三角形B.直角三角形
C.等腰三角形D.等边三角形
f答案B解析∵2bcosC-2ccosB=a,∴2si
BcosC-2si
CcosB=si
A=si
B+C,即si
BcosC=3cosBsi
C,∴ta
B=3ta
C,又B=2C,∴1-2ttaa
C2C=3ta
C,得ta
C=33,C=π6,B=2C=π3,A=π2,故△ABC为直角三角形.故选B.
6.2018广东广州调研如图所示,在△ABC中,A→N=13A→C,P是BN上的一点,若→AP=
mA→B+121→AC,则实数m的值为

A.191B.151
C.131D.121
答案B解析因为N,P,B三点共线,所以→AP=mA→B+121→AC=m→AB+161A→N,从而m+161=1m=
151.故选B.
7.2018湖南长郡中学调研若△ABC的内角A,B,C所对的边分别为a,b,c,已知
2bsi
2A=asi
B,且c=2b,则ab等于

A.2B.3C.2D.3答案A解析由2bsi
2A=asi
B,得4bsi
AcosA=asi
B,由正弦定理得4si
Bsi
AcosA=si
Asi
B,∵si
A≠0,且si
B≠0,∴cosA=14,由余弦定理,得a2=b2+4b2-b2,∴a2=4b2,∴ab=2.故选A.
f8.2018江西九校联考已知5si
2α=6cosα,α∈0,π2,则ta
α2=

A.-23B.13C.35D.23
答案B
解析由题意知10si
αcosα=6cosα,又α∈0,π2,∴si
α=35,cosα=45,ta
α2
si
α2=
cosα2
2si
2α2=
2si
α2cosα2
=1-sic
oαsα
4=1-35=13.
5
9.2018东北三省四市二联将函数fx=si
2x+φφ<π2的图象r
好听全球资料 返回顶部