可以把分析测试设备,如反射式高能电子衍射仪、四极质谱仪等与生长系统相结合以实现薄膜生长的原位监测。缺点有衬底选择、掺杂技术以及其他辅助技术要求较高,激光器
6
f效率低,电能消耗较大,投资较大;由于分子束外延设备昂贵而且真空度要求很高,所以要获得超高真空以及避免蒸发器中的杂质污染需要大量的液氮,因而提高了日常维持的费用。目前,用这种技术已能制备薄到几十个原子层的单晶薄膜,以及交替生长不同组分、不同掺杂的薄膜而形成的超薄层量子阱微结构材料。总之,分子束外延技术在制备纳米材料方面将会更成熟。(五)、脉冲激光沉积发
脉冲激光沉淀是将脉冲激光器产生的高功率脉冲激光束聚焦于靶材料表面,使其产生高温熔蚀,继而产生金属等离子体,同时这种等离子体定向局域发射沉积在衬底上而形成薄膜。整个物理过程分为:等离子体产生、定向局域膨胀发射、衬底上凝结。由于高能粒子的作用,薄膜倾向于二维生长,这样有利于连续纳米薄膜的形成。PLD技术的每一次发展都伴随着新型激光器的产生和研究激光与物质相互作用的进展。脉冲沉积系统一般由脉冲激光器、光路系统、沉积系统、辅助设备组成,如图4所示。
二十世纪70年代起,短脉冲Q开关激光器出现,其瞬时功率可达到106W以上,可以用于复合成分薄膜的沉积,这为PLD的广泛应用奠定了基础。自成功制作高温的Tc超导膜开始,用作膜制造技术的脉冲激光沉积获得普遍赞誉,并吸引了广泛的注意。脉冲激光沉积已用来制作具备外延特性的晶体薄膜。陶瓷氧化物、
7
f氮化物膜、金属多层膜,以及各种超晶格都可以用PLD来制作。近来亦有报告指出,利用PLD可合成纳米管、纳米粉末、量子点。关于复制能力、大面积递增及多级数的相关生产议题,亦已经有人开始讨论。因此,薄膜制造在工业上可以说已迈入新纪元16。随着科技的发展,超快脉冲激光、脉冲激光真空弧、双光束脉冲激光等最9新的激光发生器用于激光沉淀纳米粒子膜制备技术17。复旦大学许宁等用248
m的KrF准分子脉冲激光烧蚀Z
Se靶材沉积Z
Se薄膜。波兰BylicaA等在ITO衬底上PLD生长CdTe、CdS及CdTeCdS多层结构评论:
脉冲激光沉积法的优点是能在较低的温度下进行,易获得的多组分薄膜,即具有良好的保成分性,过程易于控制;沉积速率高,试验周期短,衬底温度要求低;工艺参数任意调节,对靶材的种类没有限制;发展潜力巨大,具有极大的兼容性;便于清洁处理,可以制备多种薄膜材料。脉冲激光沉积法的缺点是不易于制备r