全球旧事资料 分类
大数据时代的数据挖掘技术
Docume
tserial
umber【UU89WTUU98YTUU8CBUUUTUUT108】
f大数据时代的数据挖掘技术
【摘要】随着大数据时代的到来,在大数据观念不断提出的今天,加强数据大数据挖掘及时的应用已成为大势所趋。那么在这一过程中,我们必须掌握大数据与数据挖掘的内涵,并对数据挖掘技术进行分析,从而明确大数据时代下数据挖掘技术的应用领域,促进各项数据的处理,提高大数据处理能力。
【关键词】大数据时代;数据挖掘技术;应用大数据时代下的数据处理技术要求更高,所以要想确保数据处理成效得到提升,就必须切实加强数据挖掘技术的应用,才能更好地促进数据处理职能的转变,提高数据处理效率,以下就大数据时代下的数据挖掘技术做出如下分析。1大数据与数据挖掘的内涵分析近年来,随着云计算和物联网概念的提出,信息技术得到了前所未有的发展,而大数据则是在此基础上对现代信息技术革命的又一次颠覆,所以大数据技术主要是从多种巨量的数据中快速的挖掘和获取有价值的信息技术,因而在云时代的今天,大数据技术已经被我们所关注,所以数据挖掘技术成为最为关键的技术。尤其是在当前在日常信息关联和处理中越来越离不开数据挖掘技术和信息技术的支持。大数据,而主要是对全球的数据量较大的一个概括,且每年的数据增长速度较快。而数据挖掘,主要是从多种模糊而又随机、大量而又复杂且不规则的数据中,获得有用的信息知识,从数据库中抽丝剥茧、转换分析,从而掌握其潜在价值与规律1。
f2大数据时代下数据挖掘技术的核心分析方法数据挖掘的过程实际就是对数据进行分析和处理,所以其核心就在于数据的分析方法。要想确保分析方法的科学性,就必须确保所采用算法的科学性和可靠性,获取数据潜在规律,并采取多元化的分析方法促进问题的解决和优化。以下就几种常见的数据分析方法做出简要的说明。一是归类法,主要是将没有指向和不确定且抽象的数据信息予以集中,并对集中后的数据实施分类整理和编辑处理,从而确保所形成的数据源具有特征一致、表现相同的特点,从而为加强对其的研究提供便利。所以这一分析方法能有效的满足各种数据信息处理。二是关联法,由于不同数据间存在的关联性较为隐蔽,采取人力往往难以找出其信息特征,所以需要预先结合信息关联的表现,对数据关联管理方案进行制定,从而完成基于某种目的的前提下对信息进行处理,所以其主要是在一些信息处理要求高和任务较为复杂的信息处理工作之中。三是特征法r
好听全球资料 返回顶部