)当面PAC面QAC时,求三棱锥QACP的体积20设点A、B的坐标分别为2020直线AMBM相交于点M且它们的斜率之积是
12
f(1)求点M的轨迹C的方程;(2)直线lykx1与曲线C相交于DE两点,若Q02是否存在实数k,使得DEQ的面积为若存在,请求出k的值;若不存在,请说明理由21已知函数fxl
xaxaaR(1)求函数fx的单调区间;(2)当x1时,函数gxx1fxl
x的图象恒不在x轴的上方,求实数a的取值范围
4?3
二选一:请考生在22、23两题中任选一题作答,并在相应题号前的方框中涂黑
22选修44:坐标系与参数方程在平面直角坐标系中,已知曲线C的参数方程为
x12acosy12asi
为参数,a2
(Ⅰ)当a2时,若曲线C上存在AB两点关于点M02成中心对称,求直线AB的斜率;(Ⅱ)在以原点为极点,x轴正半轴为极轴的极坐标系中,极坐标方程为si
与曲线C相交于CD两点若CD4,求实数a的值23选修45:不等式选讲已知函数fxx5,gx52x3(Ⅰ)解不等式fxgx;
22(Ⅱ)设Ffxyg3y12,求证:F2
20的直线l4
f试卷答案一、选择题
15CADCB610ABBAD11、12:BB
二、填空题
13
c1c2c
14
12
150
42
16
32,3
三、解答题
17(1)设数列a
的公差为d由a23,且log2a1log2a3,log2a7成等差数列,得
2log2a3log2a1log2a7,即2log23d10g23dlog235d,
得2log23dlog23d35d,
2
得3d3d35d,解得d1或d0舍去
2
f所以数列a
的通项公式为a
a2
2d3
21
1(2)因为b
所以S
1111a
a
1
1
2
1
2
111111111111233445
1
1
1
2
11
2
22
2
18(1)每道题实测的答对人数及相应的实测难度如下表:题号实测答对人数实测难度18082808370747075202
所以估计120人中有1200224人答对第5题(2)记编号为i的学生为Aii12345,从这5人中随机抽取2人,不同的抽取方法有10种其中r