全球旧事资料 分类
第二章
1答:在统计学中用来描述集中趋势的指标体系是平均数,包括算术均数,几何均数,中位数。均数反映了一组观察值的平均水平,适用于单峰对称或近似单峰对称分布资料的平均水平的描
述。几何均数:有些医学资料,如抗体的滴度,细菌计数等,其频数分布呈明显偏态,各观察值之间
呈倍数变化等比关系,此时不宜用算术均数描述其集中位置,而应该使用几何均数(geometricmea
)。几何均数一般用G表示,适用于各变量值之间成倍数关系,分布呈偏态,但经过对数变换后成单峰对称分布的资料。
中位数和百分位数:中位数(media
)就是将一组观察值按升序或降序排列,位次居中的数,常用M表示。理论上数据集中有一半数比中位数小,另一半比中位数大。中位数既适用于资料呈偏态分布或不规则分布时集中位置的描述,也适用于开口资料的描述。所谓“开口”资料,是指数据的一端或者两端有不确定值。百分位数(perce
tile)是一种位置指标,以PX表示,一个百分位数PX将全部观察值分为两个部分,理论上有X%的观察值比PX小,有(100X)%观察值比PX大。故百分位数是一个界值,也是分布数列的一百等份分割值。显然,中位数即是P50分位数。即中位数是一特定的百分位数。常用于制定偏态分布资料的正常值范围。2答:常用来描述数据离散程度的指标有:极差、四分位数间距、标准差、方差、及变异系数,尤以方差和标准差最为常用。极差(ra
ge,记为R),又称全距,是指一组数据中最大值与最小值之差。极差大,说明资料的离散程度大。用极差反映离散程度的大小,简单明了,故得到广泛采用,如用以说明传染病、食物中毒等的最短、最长潜伏期等。其缺点是:1不灵敏;2不稳定。四分位数间距(i
terquartilera
ge)就是上四分位数与下四分位数之差,即:Q=QU-QL其间包含了全部观察值的一半。所以四分位数间距又可看成中间一半观察值的极差。其意义与极差相似,数值大,说明变异度大;反之,说明变异度小。常用于描述偏态分布资料的离散程度。极差和四分位数间距均没有利用所研究资料的全部信息,因此仍然不足以完整地反映资料的离散程度。方差(varia
ce)和标准差(sta
darddeviatio
)由于利用了所有的信息,而得到了广泛应用,常用于描述正态分布资料的离散程度。变异系数(coefficie
tofvaria
ce,CV)亦称离散系数(coefficie
tofdispersio
),为标准差与均数之比,常用百分数表示。变异系数没有度量衡单位,常用于比较度量单位不同或均数相差悬殊的两组或多组资料的离散程度。r
好听全球资料 返回顶部