全球旧事资料 分类
温度检测部分采用了矽恩微电子公司生产的高精度数字温度传感器SN1086,SN1086可以同时检测芯片本身温度,相当于间接检测PCB温度,又能检测远端三级管温度,若将三极管与LED一同焊接在铝基板上便可以检测铝基板温度。SN1086将检测到的两种温度通过芯片内部的高精度DeltaSigmaADC进行模数转换,将温度的数字结果通过I2C总线的SDA数据线和SCL时钟线与单片机通信。当单片机接受到铝基板温度结果后与预设定的安全温度点阈值进行比对,当温度过高时启动温度补偿程序,通过PWM1按比例降低LED驱动器的输出电流。单片机同时监控PCB板温度,温度过高时通过PWM2信号线控制风扇对PCB进行散热,确保板上的元器件尤其是电解电容的温度不会过高。
这种系统控制极大增强了系统的稳定性,并保证整体系统的使用寿命,实践证明系统内部温度得到很好地控制,但硬件成本较高,适于中高端领域的应用。
DCDC降压LED驱动器实现温度补偿若能将温度补偿功能集成在芯片内部,这将极大降低使用成本和所占空间。SN3352正是为了这个目的而设计出来的芯片,SN3352是降压型DCDC恒流芯片,工作电压范围640V,输出电流达700mA,温度补偿未启动时恒流性能优良,适用于驱动串联的1W或者3WLED灯。SN3352具备调光功能,通过改变ADJI引脚的模拟电压或者对此引脚施加PWM信号都能实现调光功能。SN3352内部集成了矽恩微电子自有专利技术的温度补偿电路,温度补偿功能需要外接一个普通电阻Rth用于设置温度补偿启动的温度点Tth和一个检测温度的负温度系数热敏电阻R
tc配合实现。
f图3SN3352驱动单路LED典型应用图
SN3352通过RNTC引脚不断测量与LED焊接在同一块铝基板的热敏电阻R
tc阻值,随着LED铝基板温度上升,当热敏电阻的阻值低至与连接在RTH引脚上的普通电阻Rth阻值相等时,温度补偿功能启动,输出电流将会自动随温度升高而降低,由此可见,温度补偿启动的温度点Tth可以通过改变Rth阻值进行更改。而电流随温度降低的斜率可以通过选择不同B常数的热敏电阻来决定。输出电流的公式如下:当R
tcRth时,温度补偿未启动,输出电流保持不变,大小由设置电流电阻Rs和ADJI引脚电压决定:
其中:VADJI为调光引脚ADJI引脚的电压,单位V,调光范围03V12V,悬空时电压为12V;当R
tcP
其中:
R25为热敏电阻在25oC下的
阻值,B为热敏电阻的B常数,热敏电阻特性主要由这两个参数决定;
根据输出补偿电流的结果对不同的温度做一组电流曲线,不难得出即便把温度补偿启动的温度点Tth设置在r
好听全球资料 返回顶部