解题技巧专题:分式化简求值的方法与技巧
◆类型一着眼全局,整体代入111ab1.已知-=,则的值为ab36a-6b11AB.-22C.2D.-2
2b22b2.若a2+b2=3ab,求分式1+a2-b21+a-b
的值.
◆类型二巧妙变形,构造代入x3.已知x2-3x+1=0,则2的值是x-x+111AB.2C23D.3
x4+x2+114.★若x-=4,则=________.xx21111115.★★已知a,b,c不等于0,且a+b+c=0,求a++b++c+的值.bcacab
◆类型三参数辅助,多元归一
fxy+yz+zxxyz6.已知==≠0,求222的值.234x+y+z
a+b3a2-b27.已知=,求分式的值.aba-b2
◆类型四打破常规,倒数代入x1x28.★已知2=,求4的值.x+x+132x-3x2+2
ab1bc1ac1abc9.★★已知=,=,=,求的值.a+b3b+c4a+c5ab+ac+bc
f参考答案与解析
-3(a-b)111ab1.B解析:因为-=,所以ab=-3a-b,所以原式==ab36(a-b)6(a-b)1=-22b22ba2-b2+2b2a-b+2ba2+b2a+ba2+b22.解:1+a2-b21+a-b==22==22a-ba-ba-ba-b(a-b)2a2+b23ab因为a2+b2=3ab,所以原式==3a2+b2-2ab3ab-2abx13.A解析:因为x2-3x+1=0,所以x2=3x-1,所以原式==3x-1-x+124.191211x-=x2-2+2=16,即x2+2=18,则解析:已知等式两边同时平方得xxx
x4+x2+121=x+1+2=18+1=192xx111111111115.解:因为a+b+c=0,所以ab+c+ba+c+ca+b=ab+c+a-1+ba+c+1111111-1+ca+b+c-1=a+c+ba+b+c-3=-3b6.解:设xy+yz+zxxyz===k,则x=2k,y=3k,z=4k,所以222=234x+y+z
2k3k+3k4k+2k4k6k2+12k2+8k226==(2k)2+(3k)2+(4k)24k2+9k2+16k229
a=2k,a-b24a+b=3k,7.解:设a+b=3k,a-b=2k,联立方程组解得所以=ab51a-b=2k,b=k,2
22
5
x2+x+11x1111x+8.解:因为2=,所以=3,x+1+=3,x+=2所以x2+2=xxxxxx+x+13
2
2x4-3x2+212x222x+2-2=4-2=2所以=2x-3+=2-3=2×2-3=1,所以xx2x22x4-3x2+2a+bb+ca+cab1bc1ac119.解:因为=,=,=,所以=3,=4,=5,所以+abbcacba+b3b+c4a+c5
=1
11111111111abc1=3,+=4,+=5,所以2所以++r