2013年普通高考数学科一轮复习精品学案
第17讲基本案例
一.课标要求:
通过阅读中国古代数学中的算法案例,体会中国古代数学对世界数学发展的贡献。
二.命题走向
算法是高中数学新课程中的新增内容,本讲的重点是几种重要的算法案例思想,复习时重算法的思想轻算法和程序的构造。预测2013年高考对本讲的考察是:以选择题或填空题的形式出现,分值在5分左右,考察的热点是算法实例和传统数学知识的结合题目。
三.要点精讲
1.求最大公约数(1)短除法求两个正整数的最大公约数的步骤:先用两个数公有的质因数连续去除,一直除到所得的商是两个互质数为止,然后把所有的除数连乘起来。(2)穷举法(也叫枚举法)穷举法求两个正整数的最大公约数的解题步骤:从两个数中较小数开始由大到小列举,直到找到公约数立即中断列举,得到的公约数便是最大公约数。(3)辗转相除法辗转相除法求两个数的最大公约数,其算法可以描述如下:①输入两个正整数m和
;②求余数r:计算m除以
,将所得余数存放到变量r中;③更新被除数和余数:m
,
r;④判断余数r是否为0。若余数为0,则输出结果;否则转向第②步继续循环执行。如此循环,直到得到结果为止。(4)更相减损术我国早期也有解决求最大公约数问题的算法,就是更相减损术。在《九章算术》中记载了更相减损术求最大公约数的步骤:可半者半之,不可半者,副置分母子之数,以少减多,更相减损,求其等也,以等数约之。步骤:Ⅰ.任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。Ⅱ.以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。2.秦九韶算法秦九韶算法的一般规则:秦九韶算法适用一般的多项式fxa
x
a
1x
1…a1xa0的求值问题。用秦九韶算法求一般多项式fxa
x
a
1x
1…a1xa0当xx0时的函数值,可把
次多项式的求值问题转化成求
个一次多项式的值的问题,即求v0a
v1a
xa
-1v2v1xa
-2v3v2xa
-3
2013年普通高考数学科精品复习资料第1页共9页
f……v
v
-1xa0观察秦九韶算法的数学模型,计算vk时要用到vk-1的值,若令v0a
。我们可以得到下面的递推公式:v0a
vkvk-1a
-kk12…
这是一个在秦九韶算法中反复执行的步骤,可以用循环结构来实现。3排序排序的算法很多,课本主要介绍里两种排序方法:直接插入排序和冒泡排序(1)r