解释。1)在Uab伏特的电位中a点电位高于b点,2)a点电位相对于b点而言是Uab,通常在逻辑上遵循虽然电流和电压是电路的两个基本变量,但仅有它们两个是不够的。从实际应用来说,我们需要知道功率和能量。为了把功率和能量同电压、电流联系起来,我们重温物理学中关于功率是消耗或吸收的能量的时率,它是以瓦特为单位来度量的。我们把这个关系式写成:式中p是以瓦特为单位的功率,w是以焦耳为单位的能量,t是以秒为单位的时间,从方程(1-1)、(1-3)和(1-5)可以推出由于u和i通常是时间的函数,方程(1-6)中的功率p是个时间变量于是被称为瞬时功率,
f某一元件吸收或提供的功率等于元件两端电压和通过它的电流的乘积。如果这个功率的符号是正的,那么功率向元件释放或被元件吸收。另一方面,如果功率的符号是负的,那么功率是由元件提供的。但我们如何得知何时功率为正或为负?在我们确定功率符号时,电流的方向和电压的极性起着主要的作用,这就是我们在分析图1-3(a)所显示的电流i和电压u的关系时特别谨慎的重要原因。为了使功率的符号为正,电压的极性和电流的方向必须与图1-3(a)所示的一致。这种情况被称为无源符号惯例,对于无源符号惯例来说,电流流进电压的正极。在这种情况下,p=ui或ui0,表明元件是在吸收功率。而如果p=-ui或ui0,如图1-3(b)所示时,表明元件是在释放或提供功率。
事实上,在任何电路中必须遵循能量守恒定律。由于这个原因,任一电路中在任何瞬间功率的代数和必须等于零这再一次证明了提供给电路的功率必须与吸收的功率相平衡这一事实。从方程(1-7)可知,从时间t0到时间t被元件吸收或由元件提供的功率等于Exercises(11)
在下面进行的工作中我们要研究的简单电路元件可以根据流过元件的电流与元件两端的电压的关系进行分类。例如,如果元件两端的电压正比于流过元件的电流,即u=ki,我们就把元件称为电阻器。其他的类型的简单电路元件的端电压正比于电流对时间的导数或正比于电流关于时间的积分。还有一些元件的电压完全独立于电流或电流完全独立于电压,这些是独立源。此外,我们还要定义一些特殊类型的电源,这些电源的电压或电流取决于电路中其他的电流或电压,这样的电源将被称为非独立源或受控源。
第二节电路元件
电路仅仅是元件之间的相互结合。我们发现电路中存在有两种元件:无源元件和有源元件。有源元件能够产生能量而无源元件却不能,无源元件有电阻、电容和电感器等。r