第9章第6节
一、选择题→→→→→→→→1.已知四边形ABCD满足:ABBC0,BCCD0,CDDA0,DAAB0,则该四边形为A.平行四边形C.平面四边形答案D解析ππππ→→∵ABBC0,∴∠ABC2,同理∠BCD2,∠CDA2,∠DAB2,由内角和定理知,B.梯形D.空间四边形
四边形ABCD一定不是平面四边形,故选D→→2.如图,点P是单位正方体ABCD-A1B1C1D1中异于A的一个顶点,则APAB的值为A.0B.1C.0或1D.任意实数答案C→解析AP可为下列7个向量:→→→→→→→→→→→→→AB,AC,AD,AA1,AB1,AC1,AD1,其中一个与AB重合,APAB=AB2=1;AD,AD1,π→→→→→→→→→AA1与AB垂直,这时APAB=0;AC,AB1与AB的夹角为45°,这时APAB=2×1×cos4=1,最1→→后AC1AB=3×1×cos∠BAC1=3×=1,故选C33.如图,在平行六面体ABCD-A1B1C1D1中,M为AC与BD的交点,N为BB1的靠近B→→→→的三等分点,若A1B1=a,A1D1=b,A1A=c,则MN等于111A.-2a+2b+3c111B2a+2b-3c111C2a-2b-3c211D.-2a-2b+3c
f答案C1→→→→1→解析MN=MB+BN=2D1B1+3BB11→1→111→=2A1B1-A1D1-3A1A=2a-2b-3c→→4.已知A2,-51,B2,-24,C1,-41,则AC与AB的夹角为A.30°C.60°答案C→→ABAC31→→→→解析AB=033,AC=-110.设〈AB,AC〉=θ,则cosθ=→→==2,ABAC322∴θ=60°5.已知a=2,-13,b=-14,-2,c=75,λ,若a,b,c三向量共面,则实数λ等于62A764C7答案D解析∵a,b,c三向量共面,∴存在实数m,
使c=ma+
b,即75,λ=2m-
,-m+4
3m-2
,63B765D7B.45°D.90°
2m-
=765∴-m+4
=5,∴λ=7λ=3m-2
→→→→→→6.2010山东青岛在空间四边形ABCD中,ABCD+ACDB+ADBC的值为A.0C.1答案A→→→→→→解析ABCD+ACDB+ADBC→→→→→→→→→=ABBD-BC+BC-BADB+BD-BABC3B2D.无法确定
f→→→→→→→→→→→→=ABBD-ABBC+BCDB-BADB+BDBC-BABC=0,故选A7.△ABC的顶点分别为A1,-12,B5,-62,C13,-1,AC边上的高BD等于则A.5C.4答案A→→解析设AD=λAC,Dx,y,z,则x-1,y+1,z-2=λ04,-3,∴x=1,y=4λ-1,z=2-3λ→∴BD=-44λ+5,-3λ,→→→又AC=04,-3,AC⊥BD,∴44λ+5-3-3λ=0,9124→∴λ=-5,∴BD=-4,5,5,→∴BD=Br