目录
_
一、遗产算法的由来2二、遗传算法的国内外研究现状3三、遗传算法的特点4四、遗传算法的流程6五、遗传算法实例10六、遗传算法编程14七、总结错误!未定义书签。附录一:运行程序16
f遗传算法基本理论与实例
一、遗产算法的由来
遗传算法(Ge
eticAlgorithm,简称GA)起源于对生物系统所进行的计算机模拟研究。20世纪40年代以来,科学家不断努力从生物学中寻求用于计算科学和人工系统的新思想、新方法。很多学者对关于从生物进化和遗传的激励中开发出适合于现实世界复杂适应系统研究的计算技术生物进化系统的计算模型,以及模拟进化过程的算法进行了长期的开拓性的探索和研究。Joh
HHolla
d教授及其学生首先提出的遗传算法就是一个重要的发展方向。遗传算法借鉴了达尔文的进化论和孟德尔、摩根的遗传学说。按照达尔文的进化论,地球上的每一物种从诞生开始就进入了漫长的进化历程。生物种群从低级、简单的类型逐渐发展成为高级复杂的类型。各种生物要生存下去及必须进行生存斗争,包括同一种群内部的斗争、不同种群之间的斗争,以及生物与自然界无机环境之间的斗争。具有较强生存能力的生物个体容易存活下来,并有较多的机会产生后代;具有较低生存能力的个体则被淘汰,或者产生后代的机会越来越少。,直至消亡。达尔文把这一过程和现象叫做“自然选择,适者生存”。按照孟德尔和摩根的遗传学理论,遗传物质是作为一种指令密码封装在每个细胞中,并以基因的形式排列在染色体上,每个基因有特殊的位置并控制生物的某些特性。不同的基因组合产生的个体对环境的适应性不一样,通过基因杂交和突变可以产生对环境适应性强的后代。经过优胜劣汰的自然选择,适应度值高的基因结构就得以保存下来,从而逐渐形成了经典的遗传学染色体理论,揭示了遗传和变异的基本规律。遗传算法由美国的Joh
HHolla
d教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关r