条弦所对的圆周角有两类。
知识点二圆内接四边形及其性质
圆内接多边形:如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。圆内接四边形的性质:圆内接四边形的对角互补。
242点、直线、圆和圆的位置关系
2421点和圆的位置关系
知识点一点与圆的位置关系
(1)点与圆的位置关系有:点在圆外,点在圆上,点在圆内三种。
(2)用数量关系表示:若设⊙O的半径是r,点P到圆的距离OPd,则有:
点P在圆外d>r;点p在圆上
dr;点p在圆内
d<r。
知识点二过已知点作圆(1)经过一个点的圆(如点A)以点A外的任意一点(如点O)为圆心,以OA为半径作圆即可,如图,这样的圆可以作无数个。
O1A
O2
O3
(2)经过两点的圆(如点A、B)以线段AB的垂直平分线上的任意一点(如点O)为圆心,以OA(或OB)为半径作圆即可,如图,这样的圆可以作无数个。
2
fA
B(3)经过三点的圆①经过在同一条直线上的三个点不能作圆
②不在同一条直线上的三个点确定一个圆,即经过不在同一条直线上的三个点可以作圆,且只能作一个圆。如经过不在同一条直线上的三个点A、B、C作圆,作法:连接AB、BC(或AB、AC或BC、AC)并作它们的垂直平分线,两条垂直平分线相交于点O,以点O为圆心,以OA(或OB、OC)的长为半径作圆即可,如图,这样的圆只能作一个。
③
A
O
B
C
知识点三三角形的外接圆与外心(1)经过三角形三个顶点可以作一个圆,这个圆叫做三角形的外接圆。
(2)外接圆的圆心是三角形三条边的垂直平分线的交点,叫做这个三角形的外心。知识
点四反证法(1)反证法:假设命题的结论不成立,经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立,这种证明命题的方
法叫做反证法。(2)反证法的一般步骤:①假设命题的结论不成立;②从假设出发,经过逻辑推理,推出或与定义,或与公理,或与定理,或与已知等相矛盾的结论;③由矛盾判定假设不正确,从而得出原命题正确。
2422直线和圆的位置关系
知识点一直线与圆的位置关系
(1)直线与圆的位置关系有:相交、相切、相离三种。
(2)直线与圆的位置关系可以用数量关系表示
若设⊙O的半径是r,直线l与圆心0的距离为d,则有:
直线l和⊙O相交d<r;
直线l和⊙O相切dr;
直线l和⊙O相离d>r。
知识点二切线的判定和性质
(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。
(2)切线的性r