全球旧事资料 分类
倍,而与车速无关某时刻列车后部质量为m
的车厢脱钩,而机车的牵引力不变,则脱钩的车厢刚停下的瞬间,前面列车的速度是多少?解析此题求脱钩的车厢刚停下的瞬间,前面列车的速度,就机车来说,在车厢脱钩后,开始做匀加速直线运动,而脱钩后的车厢做
匀减速运动,由此可见,求机车的速度可用匀变速直线运动公式和牛顿第二定律求解现在若把整个列车当作一个整体,整个列车在脱钩前后所受合外力都为零,所以整个列车动量守恒,因而可用动量守恒定律求解根据动量守恒定律,得:Mv0M-mVVMv0M-m
即脱钩的车厢刚停下的瞬间,前面列车的速度为Mv0M-m【说明】显然此题用整体法以列车整体为研究对象,应用动量守恒定律求解比用运动学公式和牛顿第二定律求简单、快速例10总质量为M的列车沿水平直轨道匀速前进,其末节车厢质量为m,中途脱钩,司机发觉时,机车已走了距离L,于是立即关闭
油门,撤去牵引力,设运动中阻力与质量成正比,机车的牵引力是恒定的,求,当列车两部分都静止时,它们的距离是多少?解析比较简单。假设末节车厢刚脱钩时,机车就撤去牵引力,则机车与末节车厢同时减速,因为阻力与质量成正比,减速过程中它们的加速度相同,所以同时停止,它们之间无位移差。事实是机车多走了距离L才关闭油门,相应的牵引力对机车多做了FL的功,这就要求机车相对于末节车厢多走一段距离△S,依靠摩擦力做功,将因牵引力多做功而增加的动能消耗掉,使机车与末节车厢最后达到相同的静止状态。所以有:FLf△S其中FμMgfμM-mg代入上式得两部分都静止时,它们之间的距离:△SMLM-m例11如图110所示,细绳绕过两个定滑轮A和B,在两端各挂个重为P的物体,现在A、B的中点C处挂一个重为Q的小球,本题若分别以机车和末节车厢为研究对象用运动学、牛顿第二定律求解,比较复杂,若以整体为研究对象,研究整个过程,则
Q2P,求小球可能下降的最大距离h已知AB的长为2L,不讲滑轮和绳之间的摩擦力及绳的质量
解析
选小球Q和两重物P构成的整体为研究对象,该整体的速率从零开始逐渐增为最大,紧接着从最大又逐渐减小为零(此时小球
下降的距离最大为h),如图110甲。在整过程中,只有重力做功,机械能守恒。因重为Q的小球可能下降的最大距离为h,所以重为P的两物体分别上升的最大距离均为
h2L2L
考虑到整体初、末位置的速率均为零,故根据机械能守恒定律知,重为Q的小球重力势能的减少量等于重为P的两个物r
好听全球资料 返回顶部