的和蓝的。然后我观察到,不论我摘哪两朵花,其中必定有1朵是蓝的。据此,你们能说出红花和蓝花各有多少吗”“不能说出,由于这道题所给的条件不够充分,因此无法解。”托尼摇着头说。“完全能说出,由于这道题所给的条件足够充分,因此可以解。”查理点着头说。兄弟俩谁说的对为什么5、“在吉米家的另一个花园里,种有红、黄、蓝3种花。”爸爸眯缝着眼,一字一顿地微笑道,“我观察到,不论我摘哪3朵花,至少有1朵是蓝的;我还观察到,不论我摘哪3朵花,至少有1朵是红的。据此就可以类推不论我摘哪3朵花,至少有1朵是黄的吗”“可以类推。”托尼说。“不能类推。”查理说。兄弟俩谁说的对为什么
神奇的“缺8数”“缺8数”12345679,颇为神秘,故许多人在进行探索。清一色菲律宾前总统马科斯偏好的数字不是8,却是7。于是有人对他说:“总统先生,你不是挺喜欢7吗?拿出你的计算器,我可以送你清一色的7。”接着,这人就用“缺8数”乘以63,顿时,777777777映入了马科斯先生的眼帘。“缺8数”实际上并非对7情有独钟,它是“一碗水端平”,对所有的数都“一视同仁”的:你只要分别用9的倍数(918……直到81)去乘它,则111111111222222222……直到999999999都会相继出现。三位一体“缺8数”引起研究者的浓厚兴趣,于是人们继续拿3的倍数与它相乘,发现乘积竟“三位一体”地重复出现。例如:
12345679×12148148148
12345679×15185185185
12345679×57703703703轮流“休息”当乘数不是3的倍数时,此时虽然没有“清一色”或“三位一体”现象,但仍可看到一种奇异性质:乘积的各位数字均无雷同。缺什么数存在着明确的规律,它们是按照“均匀分布”出现的。另外,在乘积中缺3、缺6、缺9的情况肯定不存在。让我们看一下乘数在区间1017的情况,其中12和15因是3的倍数,予以排除。12345679×10=123456790(缺8)12345679×11=135802469(缺7)12345679×13=160493827(缺5)12345679×14=172839506(缺4)12345679×16=197530864(缺2)12345679×17=209876543(缺1)乘数在1926及其他区间(区间长度等于7)的情况与此完全类似。乘积中缺什么数,就像工厂或商店中职工“轮休”,人人有份,但也不能多吃多占,真是太有趣了!一以贯之当乘数超过81时,乘积将至少是十位数,但上述的各种现象依然存在,真是“吾道一以贯之”。
f随便看几个例子:(1)乘数为9的倍数12345679×243=2999999997,只要把乘积中最左边的一个数2加到最右边的7上,仍呈现“清一色”。(2)乘r