k2x1x21k2(2)联立
x1x2
2
(5分)4x1x220;
xy0解得xy2,故A22,xy40
设直线l的方程为:y4kx2,Mx1y1,Nx2y2,则kAM
y12kx122y2kx222,kAN2,x12x12x22x22
kAMkAN
kx122kx222k2x1x22x1x242kx1x244,x12x22x1x22x1x24
2
2联立抛物线x2y与直线y4kx2的方程消去y得x2kx4k80,
可得x1x22k,x1x24k8,代入kAMkAN可得kAMkAN1(12分)
10
f222【解析】(1)依题意,x0,fx2x2m22xmx1,xx
若2m2,则x2mx10,故fx0,故函数fx在0上单调递增;
22当m2或m2时,令x2mx10,解得x1mm4x2mm4;22
22若m2,则mm40,mm40,故函数fx在0上单调递增;22
222若m2,则当x0mm4时,fx0,当xmm4mm4时,222
2fx0,当xmm4时,fx0;2
综上所述;当m2时,函数fx在0上单调递增;
22当m2时,函数fx在0mm4和mm4上单调递增,在22
mm24mm24(6分)上单调递减;22
(2)题中不等式等价于x22mx2l
x2ex3x2,即exl
xx2mx,
x2x2因此el
xxm,设hxel
xx,xx
则hx
exx1l
xx21x2
,h10,
当x01时,exx1l
xx210,即hx0,hx单调递减;当x1时,exx1l
xx210,即hx0,hx单调递增;因此x1为hx的极小值点,即hxh1e1,故me1,故实数m的取值范围为e1(12分)
11
fr