全球旧事资料 分类
个命题(1)两条平行直线在同一平面内的射影一定是平行直线;(2)两条相交直线在同一平面内的射影一定是相交直线;(3)两条异面直线在同一平面内的射影定是两条相交直线;(4)一个锐角在平面内的射影一定是锐角.其中假命题的共有_________个.14.若一个直角在平面α内的射影是一个角,则该角最大为___________.三、解答题15.已知直线a∥平面α直线b⊥平面α,求证:a⊥b.16.如图,在长方体AC1中,已知AB=BC=a,BB1=b(b>a),连结BC1,过Bl作B1⊥BC1交CC1于E,交BC1于Q,求证:AC⊥平面EBlD1
17.如图在△ABC中,已知∠ABC=90°,SA⊥△ABC所在平面,又点A在SC和SB上的射影分别是P、Q.
求证:PQ⊥SC.18.已知在如图中,∠BAC在平面α内,点Pα,PE⊥AB,PF⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF,
求证:∠BAO=∠CAO,19.已知:点P与直线a,试证;过点P与a垂直的直线共面.20.四面体ABCD的棱AB⊥CD的充要条件是AC2+BD2=AD2+BC2.精品文档
f精品文档
四、思考题对于一个三角形,它的三条高线总相交于点,而对于一个四面体,它的四条高线是否总相交于一点呢若不总相交于一点,则怎样的四面体其四条高线才相交于一点呢这是一个美丽而非凡的问题,请读者进行研究拓展.
参考答案
一、选择题1.D2.B3.B4.C5.A6.A7.C8.D二、填空题
9.a2-b210.③、④11.412.513.414.180°
三、解答题15.证明:设β为过a的平面,且α∩β=l.∵a∥α,∴a∥l.∵b⊥l,∴b⊥a.16.证明:∵AB⊥面B1C,BC1为AC1在平面B1C上的射影,且B1E⊥BC1,∴由三垂线定理知B1E⊥AC1.又∵AA1⊥面A1C1,AB=BC,A1C1⊥B1D1,A1C1是AC1在面A1C1上的射影∴由三垂线定理得AC1⊥B1D1.又∵B1E∩B1D1=B1,∴AC1⊥平面EB1D1.17.证明:∵SA⊥面ABC,BC面ABC,∴SA⊥BC.又∵AB⊥BC且SA∩AB=A,∴BC⊥面SAB,AQ面SAB.∴BC⊥AQ,又AQ⊥SB,BC∩SB=B.∵AQ⊥面SBC.∴PQ是斜线AP在平面SBC上的射影,又∵AQ⊥SC,∴由三垂线定理的逆定理可得PQ⊥SC.18.证明:∵PO⊥α,PE=PF,∴OE=OF,又∵PE⊥AB、PF⊥AC,∴OE⊥AB、OF⊥AC.故Rt△AOE≌Rt△AOF,∴∠BAO=∠CAO.19.证明:如图,在点P和直线a所在的平面β内,过点P作直线a的垂线b,设垂足为A.设过点P与β垂直的直线为c,则必有c⊥a,再设由b、c确定的平面为α,则必有a⊥α.设l是过点P与a垂直的直线,下证:lα.若lα,设由l与c确定的平面为α′,则由a⊥l,a⊥c,l∩c=P,∴a⊥α′,这样平面α与α′都是过点Pr
好听全球资料 返回顶部