O00是z的间断点3若Pxy沿直线yx趋于0,0点,则
x2x2limzlim221x→0x→0xx0yx→0
若点Pxy沿直线yx趋于0,0点,则
x→0yx→0
limzlim
x→0
x2x2x2lim20x2x24x2x→0x4
故limz不存在故函数z在O0,0处不连续
x→0y→0
7指出下列函数在向外间断:1fxy
xy2x3y3
2fxy
y22xy22x
2
3fxyl
1-x2-y2
xx2ey4fxyy20
y≠0y0
解:1因为当yx时,函数无定义,所以函数在直线yx上的所有点处间断,而在其余点处均连续2因为当y22x时,函数无定义,所以函数在抛物线y22x上的所有点处间断而在其余各点处均连续3因为当x2y21时,函数无定义,所以函数在圆周x2y21上所有点处间断而在其余各点
175
f处均连续4因为点Pxy沿直线yx趋于O00时
x→0yx→0
limfxylim
x→0
x1e∞x2
故0,0是函数的间断点,而在其余各点处均连续8求下列函数的偏导数:
x1zxy2y
2
u2v22suv
2
3zxl
xy
2
4zl
ta
6uzxy
xy
5z1xyy7uarcta
xyz解:1
8uxz
y
z12xy2xy
z2xx23yy
2s
uvvu
s1vuvu2
su12vvu
z111x222223l
xyx2xl
xy2x2xy2x2y22x2y2z11xyx2y2xy2yx2y22x2y2
4
z1x122xsec2cscxta
xyyyyy
z1xx2x2xsec222cscyta
xyyyyy
5两边取对数得l
zyl
1xy
2zy′1xyyyy21xyy11xyyl
1xyxx1xy
故
176
fxz1xyyyl
1xy′y1xyyl
1xyy1xyyxy1xyyl
1xy1xy
6
ul
zzxyyx
ul
zzxyxy
uxyzxy1z
7
u1zxyz1zxyz1x1xyz21xy2z
uzxyz11zxyz1y1xyz21xy2zuxyzl
xyxyzl
xyz1xyz21xy2z
8
uyy1xzxz
yyu11zzxl
xxl
xyzzyuyyyxzl
x22xzl
xzzz
9已知u
x2y2uu,求证:xy3uxyxyu2xy2xyx2y2x2y22xy3xxy2xy2ux2y22yx3yxy2x
11xy
证r