全球旧事资料 分类
2013年重庆中考数学第25题专项练习
1、已知抛物线y=ax2+bx+c经过A(-4,3)、B(2,0)两点,当x3和x-3时,这条抛物线上对应点的纵坐标相等.经过点C(0,-2)的直线l与x轴平行,O为坐标原点.(1)求直线AB和这条抛物线的解析式;(2)设直线AB上的点D的横坐标为-1,P(m,
)是抛物线y=ax2+bx+c上的动点,当△PDO的周长最小时,求四边形CODP的面积.y4321
-4-3-2-1O-1-2-3-4
1234x
(第25题)
2、如图,已知抛物线y=ax2bxc(a≠0)的对称轴为x=1,且抛物线经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求此时点M的坐标;(3)设点P为抛物线的对称轴x1上的一动点,求使∠PCB=90的点P的坐标.
E
第1页共8页
f3、如图已知抛物线y
12
xbxc与y轴相交于C,与x轴相交于A、B,点A的坐标
2
为(2,0),点C的坐标为(0,1)(1)求抛物线的解析式;(2)点E是线段AC上一动点,过点E作DE⊥x轴于点D,连结DC,当△DCE的面积最大时,求点D的坐标;(3)在直线BC上是否存在一点P,使△ACP为等腰三角形,若存在,求点P的坐标,若不存在,说明理由
y
y
D
B
B
A
x
o
C
A
x
o
E
C
25题图
备用图
4、如图,二次函数y
12
x
2
c的图象经过点D
3
9,与x轴交于A、B两点.2
⑴求c的值;⑵如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;⑶设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
第2页共8页
f5、如图已知抛物线y点.
12
xbxc
2
与x轴交于A-4,0和B1,0两点,与y轴交于C
(1)求此抛物线的解析式;(2)设E是线段AB上的动点,作EFAC交BC于F,连接CE,当△CEF的面积是△BEF面积的2倍时,求E点的坐标(3)若P为抛物线上A、C两点间的一个动点,过P作y轴的平行线,交AC于Q,当P点运动到什么位置时,线段PQ的值最大,并求此时P点的坐标.y
AOC图9
B
x
6、将直角边长为6的等腰Rt△AOC放在如图所示的平面直角坐标系中,点O为坐标原点,点C、A分别在x、y轴的正半轴上r
好听全球资料 返回顶部