学信息学院
微积分(一)
期末考试试卷A
lim
1xx021x21x
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(6分)
14
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(7分)
a
b2求极限lim其中a0b0均为常数
2
11
1a1b1解:lim
2
11
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(1分)
e
a
1b
1
2lim
11a
1b
11lim12
1
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(3分)
e
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(4分)
e
11l
a
l
b1lim
12
1
┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(6分)┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅┅(7分)
ab
x123求函数fxex0的导数fx并讨论fx的连续性0x0,
3解:当x0时,fx2xe1x2
1x2
┅┅┅┅┅┅┅┅┅┅┅┅┅(1分)
1fxf0et1f0limlimlimxlimt2limt20┅┅(4分)1x0x0xx0ttx0e2te2ex
当x0时,fx2xe
31x2
为初等函数,所以连续┅┅┅┅┅┅┅┅┅(5分)
limfxlim2xe
3x0x0
1x2
lim
t
2t3et
2
0f0,故fx在x0亦连续┅(7分)
第3
页
共6页
f对外经济贸易大学信息学院
微积分(一)
期末考试试卷A
4已知fx2y2l
y其中f可导求dyx
dydxyx
解:对此方程两边取微分,可得
fx2y2dx2y2
┅┅┅┅┅┅┅┅┅┅┅┅┅(3分)
即fxy
22
xdxydyxy
22
dydxyx
┅┅┅┅┅┅┅┅┅┅┅┅┅(6分)
1xfx2y2xx2y2yx2y2x2fx2y2dydx(或dydx)┅(7分)1y22xx2y2y2fx2y2fxyyx2y2
xacos3tdyd2y5设参数方程(a为非零常数)确定了函数yfx求3dxdx2yasi
t
dydydt3asi
2tcostta
t┅┅┅┅┅┅┅┅┅┅┅┅(4分)解dxdx3acos2tsi
tdtdta
td2ydtsec2t1sec4tcsct┅┅┅┅┅┅┅(7分)22dxdx3acostsi
t3adt
6求不定积分解:
1cosxdx
si
x
┅┅┅┅┅┅┅┅┅┅┅┅┅r