对于多项式4x3-xy2,取x=10,y=10时,请你写出用上述方法产生的密码.
f参考答案
1.D2B
3.B点拨:①②正确,故选B
4.B5A6A
7.A点拨:x+mx+3=x2+m+3x+3m,若不含x的一次项,则m+3=0,所以m=-3
8.B
9.-x3y3
10.4m2
29
11.4x22xy9y2
9
4
12.a6
13.≠4
14.-3
15.21点拨:由a-2+b2-2b+1=0,得
a-2+b-12=0,所以a=2,b=1
16.7点拨:a+1=3两边平方得,a2+2a1+12=9,
a
aa
所以
a2+2+
1a2
=9,得
a2+
1a2
=7
17.解:1原式=a2b4-a9b3÷-5ab
=-a11b7÷-5ab
=1a10b6;5
2原式=x2-x2-4-x2+2+1x2
=x2-x2+4-x2-2-
1x2
=2-x2-
1x2
;
3原式=x2+2xy+y2-x2-2xy+y2÷2xy
=x2+2xy+y2-x2+2xy-y2÷2xy
=4xy÷2xy=2
18.解:13x-12x3=3x1-4x2=3x1+2x1-2x;
2-2a3+12a2-18a=-2aa2-6a+9
=-2aa-32;
f39a2x-y+4b2y-x=9a2x-y-4b2x-y=x-y9a2-4b2=x-y3a+2b3a-2b;
4x+y2+2x+y+1=x+y+1219.解:2x-3x+2-3+a3-a=2x2-x-6-9-a2=2x2-2x-12-9+a2=2x2-2x-21+a2,当a=-2,x=1时,原式=2-2-21+-22=-1720.解:△ABC是等边三角形.证明如下:因为2a2+2b2+2c2=2ab+2ac+2bc,所以2a2+2b2+2c2-2ab-2ac-2bc=0,a2-2ab+b2+a2-2ac+c2+b2-2bc+c2=0,a-b2+a-c2+b-c2=0,所以a-b2=0,a-c2=0,b-c2=0,得a=b且a=c且b=c,即a=b=c,所以△ABC是等边三角形.21.解:4x3-xy2=x4x2-y2=x2x-y2x+y,再分别计算:x=10,y=10时,x,2x-y和2x+y的值,从而产生密码.故密码为:101030,或103010,或301010
fr