的内容。该课程设计具体考察了5种经典常用的边缘检测算子并运用Matlab进行图像处理结果比较。梯度算子简单有效,LOG算法和Ca
y边缘检测器能产生较细的边缘。
边缘检测的目的是标识数字图像中灰度变化明显的点,而导函数正好能反映图像灰度变化的显著程度,因而许多方法利用导数来检测边缘。在分析其算法思想和流程的基础上,利用MATLAB对这5种算法进行了仿真实验,分析了各自的性能和算法特点,比较边缘检测效果并给出了各自的适用范围。关键词:边缘检测;图像处理;MATLAB仿真
f引言
边缘检测在图像处理系统中占有重要的作用,其效果直接影响着后续图像处理效果的好坏。许多数字图像处理直接或间接地依靠边缘检测算法的性能,并且在模式识别、机器人视觉、图像分割、特征提取、图像压缩等方面都把边缘检测作为最基本的工具。但实际图像中的边缘往往是各种类型的边缘以及它们模糊化后结果的组合,并且在实际图像中存在着不同程度的噪声,各种类型的图像边缘检测算法不断涌现。早在1965年就有人提出边缘检测算子,边缘检测的传统方法包括Kirsch,Prewitt,Sobel,Roberts,Robi
s,MarHildreth边缘检测方法以及Laplacia
Gaussia
(LOG)算子方法和Ca
y最优算子方法等。
本设计主要讨论其中5种边缘检测算法。在图像处理的过程需要大量的计算工作我们利用MATLAB各种丰富的工具箱以及其强大的计算功能可以更加方便有效的完成图像边缘的检测。并对这些方法进行比较
f第一章绪论
11课程设计选题的背景及意义
边缘是图像的最基本特征,它包含了用于识别的有用信息,为人们描述或识别目标以及解释图像提供了一个重要的特征参数。物体的边缘是以图像局部特性的不连续性为形式出现的。从本质上说,边缘常常意味着一个区域的终结和另一个区域的开始,它普遍存在于目标与背景、目标与目标、区域与区域、基元与基元之间,是图像分割所依赖的重要特征,也是纹理特征的重要信息源和形状特征的基础。有了图像边缘,我们就可以确定物体的几何尺寸并进一步对其测量,确定物体在空间中的几何位置,确定物体的形状特征并对物体进行识别。图像的边缘信息在图像分析和计算机视觉中都是十分重要的,是图像识别中提取图像特征的一个重要属性。尽管边缘在数字图像处理中的作用非常重要,但是到目前为止还没有关于边缘的精确且被广泛承认的数学定义。这里将边缘定义为图像局部特性的不连续性,如灰度的突变、颜色的突变、纹理结构的突变等。对于灰度图像,边缘是指灰度的突变,r