全球旧事资料 分类
2019年高中数学第一章解三角形111正弦定理教案新人教A版必修5
●教学目标知识与技能:通过对任意三角形边长和角度关系的探索,掌握正弦定理的内容及其证明方法;会运用正弦定理与三角形内角和定理解斜三角形的两类基本问题。过程与方法:让学生从已有的几何知识出发共同探究在任意三角形中,边与其对角的关系,引导学生通过观察,推导,比较,由特殊到一般归纳出正弦定理,并进行定理基本应用的实践操作。情感态度与价值观:培养学生在方程思想指导下处理解三角形问题的运算能力;培养学生合情推理探索数学规律的数学思思想能力,通过三角形函数、正弦定理、向量的数量积等知识间的联系来体现事物之间的普遍联系与辩证统一。●教学重点正弦定理的探索和证明及其基本应用。●教学难点已知两边和其中一边的对角解三角形时判断解的个数。●教学过程Ⅰ课题导入如图1.11,固定ABC的边CB及B,使边AC绕着顶点C转动。思考:C的大小与它的对边AB的长度之间有怎样的数量关系?显然,边AB的长度随着其对角C的大小的增大而增大。能否用一个等式把这种关系精确地表示出来?Ⅱ讲授新课探索研究图1.11CBA
在初中,我们已学过如何解直角三角形,下面就首先来探讨直角三角形中,角与边的等式关系。如图1.12,在RtABC中,设BCaACbABc根据锐角三角函数中正弦函数的定义,有
asi
A,c
bcsi
B,又si
C1ccabc则csi
Asi
Bsi
Cabc从而在直角三角形ABC中,si
Asi
Bsi
C
AbCa图1.12cB
f思考:那么对于任意的三角形,以上关系式是否仍然成立?(由学生讨论、分析)可分为锐角三角形和钝角三角形两种情况:如图1.13,当ABC是锐角三角形时,设边AB上的高是CD,根据任意角三角函数的定义,有CDasi
Bbsi
A则同理可得从而
a
si
A

b
si
B
,bA
Cac图1.13B
c
si
C

b
si
B

a
si
A
b
si
B
c
si
C
思考:是否可以用其它方法证明这一等式?由于涉及边长问题,从而可以考虑用向量来研究这个问题。(证法二):过点A作jAC,由向量的加法可得则C
ABACCB
jABjACCB
∴jABjACjCB
A
B
j
jABcos900A0jCBcos900C
∴csi
Aasi
C,即同理,过点C作jBC,可得从而
acsi
Asi
C
bcsi
Bsi
C
a
si
A

b
si
B

c
si
C
类似可推出,当ABC是钝角三角形时,以上关系式仍然成立。(由学生课后自己推导)从r
好听全球资料 返回顶部