全球旧事资料 分类
高考数学易错的知识点总结
数学,是研究数量、结构、变化、空间以及信息等概念的一门学科。下面,为大家分享高考数学易错的知识点总结,希望对大家有所帮助
求函数奇偶性的常见错误错因分析:求函数奇偶性的常见错误有求错函数定义域或是忽视函数定义域,对函数具有奇偶性的前提条件不清,对分段函数奇偶性判断方法不当等。判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域区间关于原点对称,如果不具备这个条件,函数一定是非奇非偶的函数。在定义域区间关于原点对称的前提下,再根据奇偶函数的定义进行判断,在用定义进行判断时要注意自变量在定义域区间内的任意性。抽象函数中推理不严密致误错因分析:很多抽象函数问题都是以抽象出某一类函数的共同“特征”而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质。解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值可以找到函数的不变性质,这个不变性质往往是进一步解决问题的突破口。抽象函数性质的证明是一种代数推理,和几何推理证明一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。函数零点定理使用不当致误错因分析:如果函数yfx在区间a,b上的图象是连续不断的一条曲线,并且有fafb0,那么,函数yfx在区间a,b内有零点,即存在c∈a,b,使得fc0,这个c也是方程fc0的根,这个结论我们一般称之为函数的零点定理。函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”,函数的零点定理是“无能为力”的,在解决函数的零点时要注意这个问题。混淆两类切线致误错因分析:曲线上一点处的切线是指以该点为切点的曲线的切线,这样的切线只有一条曲线的过一个点的切线是指过这个点的曲线的所有切线,这个点如果在曲线
f上当然包括曲线在该点处的切线,曲线的过一个点的切线可能不止一条。因此求解曲线的切线问题时,首先要区分是什么类型的切线。
混淆导数与单调性的关系致误错因分析:对于一个函数在某个区间上是增函数,如果认为函数的导函数在此区间上恒大于0,就会出错。研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增减的充要条件是这个函数的导函数在此区间上恒大小于等于0,且导函数在此区间的任意子区间上都不恒为零。导数与极值关系r
好听全球资料 返回顶部