全球旧事资料 分类
2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法提供10道习题供大家练习1、三边长均为整数,且最大边长为11的三角形的个数为(C)B26个C36个
A25个D37个
f【解析】根据三角形边的原理第三边可见最大的边是11则两外两边之和不能超过22因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。。。。。。1如果为10则另外一个边的长度是10,9,8。。。。。。2,两边之和大于第三边,两边之差小于
(不能为1否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)如果为9则另外一个边的长度是9,8,7,。。。。。。。3
(理由同上,可见规律出现)规律出现36总数是11+9+7+。。。。1=(1+11)×6÷2=
2、(1)将4封信投入3个邮筒,有多少种不同的投法?【解析】每封信都有3个选择。信与信之间是分步关系。
比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封,所以分步属于乘法原则即
f3×3×3×3=34(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?【解析】跟上述情况类似对于每个旅客我们都有4种选择。彼此之间选择没有关系不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道最后一个旅客也是4种可能。根据分步原则属于乘法关系即4×4×4=43
(3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?【解析】分步来做第一步:我们先选出3本书种第二步:分配给3个同学。P33=6种这里稍微介绍一下为什么是P33,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。即3×2×1这是分步选择符合乘法原则。最常见的例子就是1,2,3,4四个数字可以组成多少4位数?也是满足这样的分步原则。用P来计算是因为每个步骤之间有约束作用即下一步的选择受到上一步的压缩。即多少种可能性C8取3=56
f所以该题结果r
好听全球资料 返回顶部