因为各种不同的原因发生改变,这给人脸识别带来了不小的影响。如光照不同
f可能提取的图像不同;提取图像的角度和人物自身表情不同也会最终产生不同的形态;因为外界因素使面部收到伤害就可能导致人脸系统无法识别的情况。这些因素都让人脸识别技术的研究现状不容乐观。但是研究者多年积累的丰富经验给以后的研究建立了稳定的基础,让以后的人脸识别研究少走了很多弯路。
在人脸识别领域世界各国都取得了很多成果,如我国人脸识别的快速通关系统(MRTD),取得了国际先进的整体性能;美国国防部的人脸识别(FERET技术工程2,创建的FERET人脸数据库包含1万多张不同的人脸图像,是人脸识别领域应用最广泛的人脸数据库之一,但此人脸库只限于军方使用;英国的Ma
chester人脸库,深入得对本地人脸进行了研究。这些都为人脸识别技术的发展建立了一个个新的里程碑。
在人脸识别技术领域,各种新技术也不断涌现出来。如TimoAho
e
和MattiPietikai
e
的局部二元模式法、YuriIva
ov等人的组合分类融合方法等。这些新的人脸识别技术对未来的人脸识别研究提供了巨大的帮助。
3人脸识别的主要方法
人脸识别从应用上看,主要有两种方式:一种是对未知身份的人脸目标与相关系统图像数据库中已经有的图像进行比较,通过辨别之后确定未知目标的身份;另一种是以一个目标人脸来辨别一个或者多个待识别的人脸,从而判断是否是已知目标人脸。
人脸识别从研究上看,常用的人脸方法有特征脸人脸识别方法、弹性图匹配方法、基于Fisher线性判别准则的人脸识别方法、基于神经网络的人脸识别方法、基于支持向量机的人脸识别方法、基于贝叶斯的人脸识别方法。对目前主流人脸识别技术中识别方法进行分类,大致可以分为基于模板匹配的方法和基于几何特征的方法两大类别3。
31基于模板匹配的方法
基于模板匹配的方法是提前通过采集图像信息制作出一个原始的标准人脸模板,然后在检测人脸的时候,系统会将待检测人脸的相关数值进行匹配,如果符合原始模板的标准,就可以说是匹配成功。此方法主要是看模板与目标的相似度,因此这种方法的优点就在于可以轻易完成一定量的人脸识别,但是缺点就是容易受到各种因素的影响,从而造成识别效果达不到理想状态,甚至是检测错误。因此可以采用变形模板,即事先制定多个模板,用这些已经制定好的多个模板对单个待检测的目标进行匹配检测。
最常用的一种模型称作隐马尔可夫(Hidde
MarkovModel,HMM)模型4。起先HMM模型并没有运用到人脸识别技术上,r