全球旧事资料 分类
相交线与平行线知识点精讲1相交线同一平面中,两条直线的位置有两种情况:相交于平行相交:如图所示,直线AB与直线CD相交于点O,其中以O为顶点共有4个角:1,2,3,4;邻补角:其中1和2有一条公共边,且他们的另一边互为反向延长线。像1和2这样的角我们称他们互为邻补角;对顶角:1和3有一个公共的顶点O,并且1的两边分别是3两边的反向延长线,具有这种位置关系的两个角,互为对顶角;1和2互补,2和3互补,因为同角的补角相等,所以1=3。所以,对顶角相等例题:1如图,31=23,求1,2,3,4的度数。
2如图,直线AB、CD、EF相交于O,且ABCD,127,则2_______,FOB__________。
CE
AF
21
O
B
D
垂直:垂直是相交的一种特殊情况两条直线相互垂直,其中一条叫做另一条的垂线,它们的交点叫做垂足。如图所示,图中ABCD,垂足为O。垂直的两条直线共形成四个直角,每个直角都是90。
垂线相关的基本性质:(1)经过一点有且只有一条直线垂直于已知直线;(2)连接直线外一点与直线上各点的所有线段中,垂线段最短;(3)从直线外一点到直线的垂线段的长度,叫做点到直线的距离。例题:假设你在游泳池中的P点游泳,AC是泳池的岸,如果此时你的腿抽筋了,你会选择那条路线游向岸边?为什么?
2平行线:在同一个平面内永不相交的两条直线叫做平行线。
13
f平行线公理:经过直线外一点,有且只有一条直线和已知直线平行。
如上图,直线a与直线b平行,记作ab3同一个平面中的三条直线关系:三条直线在一个平面中的位置关系有4中情况:有一个交点,有两个交点,有三个交点,没有交点。(1)有一个交点:三条直线相交于同一个点,如图所示,以交点为顶点形成各个角,可以用角的相关知识解决;例题:如图,直线ABCDEF相交于O点,DOB是它的余角的两倍,AOE=2DOF且有OGOA,求EOG的度数。
(2)有两个交点(这种情况必然是两条直线平行,被第三条直线所截。)如图所示,直线AB,CD平行,被第三条直线EF所截。这三条直线形成了两个顶点,围绕两个顶点的8个角之间有三种特殊关系:同位角:没有公共顶点的两个角,它们在直线ABCD的同侧,在第三条直线EF的同旁(即位置相同),这样的一对角叫做同位角;内错角:没有公共顶点的两个角,它们在直线ABCD之间,在第三条直线EF的两旁(即位置交错),这样r
好听全球资料 返回顶部