进行唯一的标识进行区分。阈值分割的显著优点,成本低廉,实现简单。当目标和背景区域的像素灰度值或其它特征存在明显差异的情况下,该算法能非常有效地实现对图像的分割。阈值分割方法的关键是如何取得一个合适的阈值,近年来的方法有:用最大相关性原则选择阈值的方法、基于图像拓扑稳定状态的方法、灰度共生矩阵方法、最大熵法和峰谷值分析法等,更多的情况下,阈值的选择会综合运用两种或两种以上的方法,这也是图像分割发展的一个趋势。
基于遗传算法的图像分割
遗传算法是模拟自然界生物进化过程与机制求解问题的一类自组织与自适应的人工智能技术。对此,科学家们进行了大量的研究工作,并成功地运用于各种类型的优化问题,在分割复杂的图像时,人们往往采用多参量进行信息融合,在多参量参与的最优值求取过程中,优化计算是最重要的,把自然进化的特征应用到计算机算法中,将能解决很多问题。遗传算法的出现为解决这类问题提供了新而有效的方法,不仅可以得到全局最优解,而且大量缩短了计算时间。王月兰等人提出的基于信息融合技术的彩色图像分割方法,该方法应用剥壳技术将问题的复杂度降低,然后将信息融合技术应用到彩色图像分割中,为彩色分割在不同领域中的应用提供了一种新的思路与解决办法。
基于人工神经网络技术的图像分割
基于神经网络的分割方法的基本思想是先通过训练多层感知器来得到线性
f决策函数,然后用决策函数对像素进行分类来达到分割的目的。近年来,随着神经学的研究和进展,第三代脉冲耦合神经网络PCNN作为一种新型人工神经网络模型,其独特处理方式为图像分割提供了新的思路。脉冲耦合神经网络具有捕获特性,会产生点火脉冲传播,对输入图像具有时空整合作用,相邻的具有相似输入的神经元倾向于同时点火。因此对于灰度图像,PCNN具有天然的分割能力,与输入图像中不同目标区域对应的神经元在不同的时刻点火,从而将不同区域分割开来。如果目标区域灰度分布有重叠,由于PCNN的时空整合作用,如果灰度分布符合某种规律,PCNN也能克服灰度分布重叠所带来的不利影响,从而实现较完美的分割。这是其一个突出的优点,而这恰恰是其他的分割方法所欠缺的,其在未来的图像分割中将起主导作用。
基于小波分析和变换的图像分割
近年来,小波理论得到了迅速的发展,而且由于其具有良好的时频局部化特性和多分辨率分析能力,在图像处理等领域得到了广泛的应用。小波变换是一种多尺度多通道分析工具,比较适合对图像r