ÎļþÒ»£º£ºTHISPROGRAMISFORIMPLEMENTATIONOFDISCRETETIMEPROCESSEXTENDEDKALMANFILTERFORGAUSSIANANDLINEARSTOCHASTICDIFFERENCEEQUATIONByRCRCRSPLABSMPL17JULY2005HelpbyAarthiNadaraja
isack
owledgeddrawbackofEKFiswhe
o
li
earityishighweca
exte
dtheapproximatio
taki
gadditio
altermsi
Taylorsseriesclccloseallclearall
Xi
t_v10000wk10000vk10000forii11le
gthXi
t_vApiiXi
t_vii2Wii0Hiisi
Xi
t_viiVii0Wkii0e
dUkra
d
1200QucovUkVkra
d
1200QvcovVkC10000
100YYXXEKLMNFTR1ApXi
t_vUkQuVkQvC
WkWVforit11le
gthXXMSEitYYitXXite
dtt11le
gthXXfigure1subplot211plotXXtitleORIGINALSIGNALsubplot212plotYYtitleESTIMATEDSIGNALfigure2plotttXXttYYtitleCombi
edplotlege
dorigi
alestimatedfigure3plotMSE2titleMea
squareerror
f×ÓÎļþ£ºfu
ctio
YYXXEKLMNFTR1ApXi
t_vUkQuVkQvC
WkWV£º
Ap20forii11le
gthAp1Apii1ii1e
di
x1UUkUki
x0000PPkXi
t_vXi
t_vVVkVki
x0000QvVVforii11le
gthXi
t_vXKkii1Xi
t_vii2STEPe
dPPkApPPkApKkPPkCi
vCPPkCVQvVforii11le
gthXi
t_vXUPKii1XKkii2UUkiiEQUATIONSZkii1cosXUPKiiEQUATIONSe
dforii11le
gthXKkXBARkii1XKkiiKkiiZkiicosXKkiiSTEPe
dIIeye55PkIIKkCPPkFIFTHSTEPFOURTHVVkiiUPPERSECONDSTEPTHIRDSTEPFIRST
UPPER
forii11
fUUkUkii10000PPkXBARkXBARkVVkVkii10000XKkexpXBARkPPkMApPPkApKkPPkMCi
vCPPkMCVQvVfor
11le
gthXBARkXUPK
expXKk
UUk
EQUATIONSZk
cosXUPK
EQUATIONSe
dfori
11le
gthXUPKXNEWi
XBARki
Kki
Zki
cosXBARki
STEPe
dIIeye55PkIIKkCPPkMFIFTHSTEPFOURTHVVk
UPPERFIRSTSTEPSECONDSTEPTHIRDSTEP
UPPER
XBARkXNEWOUTXiiXBARk11OUTYiiZk11e
d
YYOUTYXXOUTX
fr