关于一元线性回归的研究
一、摘要随着社会的进步,科学技术的发展,地理科学专业越来越与人们的生活息息相关,并且运用到科学研究中去,包括计量地理学的许多科学研究方法。计量地理学中的回归分析方法是最为基本的定量分析工具,很多表面看来好像与回归分析无关、并且好像难以解决的数学方法,可以通过回归分析方法的到简明的解释。回归被用于研究可以测量的变量之间的关系。线性回归则被用于研究特殊的关系即可用直线或多维的直线描述的关系。严格讲,回归分析方法就是处理变量之间具有相关关系的一种数理统计方法。在各种回归分析方法中,一元线性回归方法最为基本。所以一元线性回归方法很是受到人们的亲耐,并且得到广泛的运用,甚至可以说是被用于几乎是所有的研究领域当然其中包括工学、物理、生物、科技、经济和人文科学等等。但是回归分析方法也存在着一定的局限性,它对数据的处理是一大难题且一般的社会工作者不太可能也没有必要对数理统计有深入的了解。但是通过回归分析方法,我们可以更好地理解因子分析、判别分析、自回归分析、功率谱分析、小波分析、神经网络分析、其他等等。可以通过建立回归分析与因子分析、判别分析、时间序列分析、灰色系统的预测分析等的数学联系。通过熟练掌握这一分析方法,也将有助于其他数学工具的学习。关键词:一元线性回归方法最小二乘法二、引言研究一个变量(因变量)对于一个或多个其他变量(解释变量)的数量依存关系。其目的在于根据已知的解释变量的数值来估计或预测因变量的总体平均值。分析因变量与解释变量之间的统计依赖关系,目的在于通过后者的已知或设定值去估计或预测前者的均值。(前一个变量被称为被解释变量或应变量,后一个(些)变量被称为解释变量或自变量。)回归分析方法的主要内容可以概括为以下三点:1)(先从一组地理数据出发,然后确定这些要素和变量之间的定量数学表达式,也就是我们所说的回归模型(2)根据一个或者几个要素(自变量)的值来预测或者控制令一个要素(因变量)的取值(3)从影响某一地理过程中的许多要素中,找出哪一些要素和变量是主要的,而哪一些要素是次要的,以及这些要素之间又存在一些什么关系。回归分析的基本步骤如下:1首先画出两个变量的散点图。2然后求回归直线方程。3最后用回归直线方程进行预报。回归分析方法所研究的地理数学模型,根据要素和变量可以分为一元地理回归模型和多元地理回归模型两种r