12y1y215y217y2y347y364
2y02y1143y03y3182y12y232
则所求三次Newto
向前插值公式为
p3xy0
ttt12tt1t23y0y0y0123ttt1tt1t211141812312t23t3
x05x0thh1t05,f05p3050875
所求三次Newto
向后插值公式为
fttt12tt1t23p3xy3y3y3y3123ttt1tt1t2644732181236469t25t23t3x25x3thh1t05,f25p32535375
4、
A1max13134
A
E221132
Amax11336;
2123
20810
25
110131ATA38133
ATAI
1081028222036182810
得ATA的两个特征值118故
22mmax12max18218,
A2m1832
5、A
32,A1max2233000160001;230001
A1130001313000133000130000,200001222000020000A2
A1max3000120000300002000050001;
1
Co
dA1A1A160001500013000110001
1
6、从方程组45中分离出x1x2x3:
x101x202x3072x201x102x3083x02x02x084123
kkx1k101x202x3072k1k01x1k02x3083据此建立Jacobi迭代公式x2k1kkx302x102x2084kkx1k101x202x3072k1k01x1k102x3083及GaussSeidel迭代公式x2k1k1k1x302x102x2084
7、fxx2x50fx3x2,据此建立Newto
迭代公式
33
xk1xk
fxkx32x5xkk2kk01fxk3xk2
f取x015迭代结果列于下表中。
k
01234
xk
15134285714132838414132826886132826886
xkxk1
015714300144730000115
7261620108
由表结果知x4132826886是x的满足条件的近似值8、这里有三个待定常数A0A1A2,将fx1xx2代入,得
hA0A1
解得A0
h2h3A1hA2A1h2r