匀变速直线运动中位移与速度的关系
追及和相遇问题相关例题与练习两物体在同一直线上追及、相遇或避免碰撞问题中的条件是:两物体能否同时到达空间某位置。因此应分别对两物体研究,列出位移方程,然后利用时间关系、速度关系、位移关系而解出。一、追及问题1、追及问题中两者速度大小与两者距离变化的关系。甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离。若甲的速度小于乙的速度,则两者之间的距离。若一段时间内两者速度相等,则两者之间的距离。2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种:⑴初速度为零的匀加速运动的物体甲追赶同方向的匀速运动的物体乙,一定能追上,追上前有最大距离的条件:两物体速度,即v甲v乙。
⑵匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。判断方法是:假定速度相等,从位置关系判断。①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。②若甲乙速度相等时,甲的位置在乙的前方,则追上。③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。解决问题时要注意二者是否同时出发,是否从同一地点出发。⑶匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。3、分析追及问题的注意点:⑴要抓住一个条件,两个关系:一个条件是两物体的速度满足的临界条件,如两物体距离最大、最小,恰好追上或恰好追不上等。两个关系是时间关系和位移关系,通过画草图找两物体的位移关系是解题的突破口。⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。⑶仔细审题,充分挖掘题目中的隐含条件,同时注意vt图象的应用。二、相遇⑴同向运动的两物体的相遇问题即追及问题,分析同上。⑵相向运动的物体,当各自发生的位移绝对值的和等于开始时两物体间的距离时即相遇。
1
【典型例题】
例1.在十字路口,汽车以05ms的加速度从停车线启动做匀加速运动,恰好有一辆自行车以.
2
5ms的速度匀速驶过停车线与汽车同方向行驶,求:
(1)什么时候它们相距最远?最远距离是多少?(2)在什么地方汽车追上自行车?追到时汽车的速度是多大?分析:⑴审题(写出或标明你认为的关键词)⑵分析过程,合理分段,画出示意图,并找出各段之间的连接点
f解题过程:
例2.火车以速度v1匀速行驶,司机发现前方同轨道上相距S处有另r