全球旧事资料 分类
RFID系统防碰撞算法设计摘要:目前RFID技术正处于迅速上升的时期。在很多实际应用中读写器的识读范围会同时出现多个标签,这时标签发送的信息就会混叠在一起发生冲突,产生碰撞问题。为此,必须采用反碰撞算法来加以克服。关键词:RFID;跳跃式二进制
0引言近几年来,RFIDRadioFreque
cyIde
tificatio
技术在全球掀起热潮,吸引了众多厂商参与相关的技术以及芯片的研究与开发。在射频识别系统中,不能排除在读写器范围内存在多个电子标签的情况,于是系统中存在两种通信形式:从读写器到电子标签的数据传输,即读写器发送的数据流被覆盖范围内的多个标签所接收,这种通信形式也被称为无线电广播;在读写器的作用范围内有多个标签同时应答,这种形式被称为多路存取。在后一种通信形式中,标签数据的混叠问题就是我们所说的碰撞问题。为了防止由于多个电子标签的数据在读写器的接收机中相互碰撞而不能准确读出,必须采用反碰撞算法来加以克服。1RFID的系统结构与工作原理无线射频识别系统RFID(RadioFreque
cyIde
tificatio
System),一般由RFID标签、RFID读写器以及计算机系统组成,如图1所示。系统基本工作原理如下:RFID标签进入磁场,接
f收RFID读写器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(无源标签)或者主动发送某一频率的信号(有源标签),RFID读写器读取信息后,解码,送至计算机系统对有关数据进行处理。
绝大多数射频识别系统是按电感耦合的原理工作的,读写器在数据管理系统的控制下发送出一定频率的射频信号,当电子标签进入磁场时产生感应电流从而获得能量,发送出自身编码等信息,该信息被读写器读取并解码后送至管理系统(一般是电脑主机)进行有关处理,这一信息的收集处理过程是以无线方式进行的。2跳跃式二进制树形反碰撞算法原理21算法建立的几点基础约定(1)跳跃式二进制树形反碰撞算法的关键是确定数据发生碰撞的具体位置。为了解决这一问题,标签数据采用曼彻斯特编码的副载波调制。该编码的特点是,在位持续时间内位值由电平的改变来表示。在半个比特周期时的负边沿表示二进制1,这时前半个比特周期含有副载波信号;在半个比特周期中的正边沿表示二进制0,这时后半个比特周期含有副载波信号。当两个以上卡片将数据返回给终端时,由于返回的数据包含卡片的唯一EPC码,所以一定会在同时返回的某一位上有不同的位值,这样
f就将正负边沿抵消了,在整个比特周期中,终端得到的是r
好听全球资料 返回顶部