)4x67x15;(2)x124x1412
2
杭州龙文教育科技有限公司
f18.如图,EF∥AD,∠1∠2,∠B40°(1)判断DG与AB平行吗?请说明理由.(2)求∠CDG的度数.
19.已知一个几何体的三视图和有关的尺寸如图.(1)写出这个几何体的名称;(2)求出这个几何体的表面积.
20.如图,线段OD的一个端点O在直线a上,以OD为一边画等腰三角形,并且使另一个顶点在直线a上,这样的等腰三角形能画多少个?(并用直尺与圆规画出相应的等腰三角形)
21.如图,已知△ABC是等边三角形,D为边AC的中点,AE⊥EC,BDEC,(1)说明△BCD与△CAE全等的理由;(2)请判断△ADE的形状,并说明理由.
22.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:米)如下:
3
杭州龙文教育科技有限公司
f甲:170165168169172173168167乙:160173172161162171170175(1)要评价这2位运动员的平均水平,你选择什么统计量?求出这个统计量.(2)请求出两组数据的方差,这两个方差的大小反映了什么?(3)经预测,跳高165米就很肯获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员比赛?若预测跳高170米方获得冠军呢?
23.如图,在直角三角形ABC中,CM是斜边AB上的中线,MN⊥AB,∠ACB的平分线CN交MN于N,求证:CMMN.
24.如图1,是边长分别为4和3的两个等边三角形纸片ABC和CD′E′叠放在一起.(1)操作:固定△ABC,将△CD′E′绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?试说明理由;(2)操作:固定△ABC,若将△CD′E′绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE的延长线交AB于点F,在线段CF上沿着CF方向以每秒1个单位长的速度平移,平移后的△CDE设为△PQR,如图3.探究:在图3中,除△ABC和△CDE外,还有哪个三角形是等腰三角形?写出你的结论并说明理由;(3)探究:如图4,在(2)的条件下,将△PQR的顶点P移动至F点,求此时QH的长
度.
4
杭州龙文教育科技有限公司
fr