“弦振动实验”实验报告一、实验目的1、观察弦振动形成的驻波并用实验确定弦振动时共振频率与实验条件的关系。2、学习用一元线形回归和对数作图法对数据进行处理。3、学习检查和消除系统误差的方法。二、实验原理
一根柔软的弦线两端被拉紧时,加以初始打击之后,弦不再受外加激励,将以一定频率进行自由振动,在弦上产生驻波,自由振动的频率称为固有频率。如果对弦外加连学的周期性激励,当外激励频率与弦的固有频率相近的时候,弦上将产生稳定的较大振幅的驻波,说明弦振动系统可以吸收频率相同的外部作用的能量而产生并维持自身的振动,外加激励强迫的振动称为受迫振动。当外激励频率等于固有频率时振幅最大将出现共振,最小的固有频率称为基频。实验还发现,当外激励频率为弦基频的2倍,3倍或者其他整数倍时,弦上将形成不同的驻波,如图1所示,这种能以一系列频率与外部周期激励发生共振的情形,在宏观体系(如机械、桥梁等)和微观体系(如原子、分子)中都存在。弦振动能形成简单而典型的驻波。
弦振动的物理本质是力学的弹性振动,即弦上各质元在弹性力的作用下,沿垂直于弦的方向发生震动,形成驻波。弦振动的驻波可以这样简化分析:看作是两列频率和振幅相同而传播方向相反的行波叠加而成。在弦上,由外激励所产生的振动以波的形式沿弦传播,经固
f定点反射后相干叠加形成驻波。固定点处的合位移为零,反射波有半波损失,即其相位与入射波相位相差π,在此处形成波节如图1中的O和L两个端点所示。距波节处入射波与反射波相位相同,此处合位移最大,即振幅最大,形成波腹。相邻的波节或者波腹之间为半波长。两端固定的弦能以其固有频率的整数倍振动。因此弦振动的波长应满足:
式中L为弦长,N为正整数。因波长与频率之积为波的传播速度v,故弦振动的频率为:由经验知,弦振动的频率不仅与波长有关,还与弦上的张力T和弦的密度ρ有关,这些关系可以用实验的方法研究。用波动方程可最终推出弦振动公式为:三、实验装置
本实验使用的XY弦音计是代替电子音叉的新仪器。它带有驱动和接收线圈装置,提供数种不同的弦,改变弦的张力,长度和粗细,调整驱动频率,使弦发生振动,用示波器显示驱动波形和传感器接收的波形,观察波动的弦在节点处的效应,进行定量实验以验证弦上波的振动。
f四、实验内容
1、定性的观察弦的震动:选用较粗弦,在弦长为60cm下加一定的
张力,用信号发生器和电磁起振器对弦进行策动,观察形r