而有利于可视化或分类;2深度神经网络在训练上的难度,可以通过“逐层初始化”(LayerwisePretrai
i
g)来有效克服,在这篇文章中,逐层初始化是通过无监督学习实现的。
自2006年以来,深度学习在学术界持续升温。斯坦福大学、纽约大学、加拿大蒙特利
f尔大学等成为研究深度学习的重镇。2010年,美国国防部DARPA计划首次资助深度学习项目,参与方有斯坦福大学、纽约大学和NEC美国研究院。支持深度学习的一个重要依据,就是脑神经系统的确具有丰富的层次结构。一个最著名的例子就是HubelWiesel模型,由于揭示了视觉神经的机理而曾获得诺贝尔医学与生理学奖。除了仿生学的角度,目前深度学习的理论研究还基本处于起步阶段,但在应用领域已显现出巨大能量。2011年以来,微软研究院和Google的语音识别研究人员先后采用DNN技术降低语音识别错误率20%30%,是语音识别领域十多年来最大的突破性进展。2012年,DNN技术在图像识别领域取得惊人的效果,在ImageNet评测上将错误率从26%降低到15%。在这一年,DNN还被应用于制药公司的DrugeActivity预测问题,并获得世界最好成绩,这一重要成果被《纽约时报》报道。
正如文章开头所描述的,今天Google、微软、百度等知名的拥有大数据的高科技公司争相投入资源,占领深度学习的技术制高点,正是因为它们都看到了在大数据时代,更加复杂且更加强大的深度模型能深刻揭示海量数据里所承载的复杂而丰富的信息,并对未来或未知事件做更精准的预测。大数据与深度学习
在工业界一直有个很流行的观点:在大数据条件下,简单的机器学习模型会比复杂模型更加有效。例如,在很多的大数据应用中,最简单的线性模型得到大量使用。而最近深度学习的惊人进展,促使我们也许到了要重新思考这个观点的时候。简而言之,在大数据情况下,也许只有比较复杂的模型,或者说表达能力强的模型,才能充分发掘海量数据中蕴藏的丰富信息。运用更强大的深度模型,也许我们能从大数据中发掘出更多有价值的信息和知识。
为了理解为什么大数据需要深度模型,先举一个例子。语音识别已经是一个大数据的机器学习问题,在其声学建模部分,通常面临的是十亿到千亿级别的训练样本。在Google的一个语音识别实验中,发现训练后的DNN对训练样本和测试样本的预测误差基本相当。这是非常违反常识的,因为通常模型在训练样本上的预测误差会显著小于测试样本。因此,只有一个解释,就是由于大数据里含有丰富的信息维度,即便是DNN这样的高容量复杂模型也是处于r