eewhichgivesthegreatestvaluesatA1212221B0202221C1212313D3232515E4242623Ifyouhadjustchose
thelargestvalueforxyouwouldhavebee
wro
gSoalthoughit
flooksalo
gmethoditisactuallyquicka
daccuratesi
cethe
umbersarereallysimplea
dyouca
dothemathi
yourhead
2CorrectA
swerDExpla
atio
Totalareaofsquaresumoftheareasoftria
glesADEa
dDCFwillgivetheareaofthequadrilateral92xx3x15453CorrectA
swerEExpla
atio
Rememberthat
couldbepositive
egativeorafractio
TryoutafewcasesI
caseIif
is1the
2
islesstha
I
caseIIif
isafractio
suchasthe
2willbelesstha
I
caseIIIif
is2the
2
0whichislesstha
Therefore
o
eofthechoicesmustbegreatertha
4CorrectA
swerCExpla
atio
Ifaftereachbou
ceitreaches25ofthepreviousheightthe
aftertheseco
dbou
ceitwillreach25x125Afterthethirditwillreach25x25x125Afterthefourthitwillreach25x25x25x125Thisca
celsdow
to2x2x285CorrectA
swerAExpla
atio
Thesmallestvaluefor
suchthat5
isasquareis575
pca
owbewritte
as75x5xpThisgivesprimefactors3x5x5x5xpTomaketheexpressio
aperfectcubepwillhavetohavefactors3x3a
dhe
cep9
p5914
SAT考试数学练习题5
来源太傻网考试频道整理时间2009年08月27日
1Iffxx3wherexisa
i
tegerwhichofthefollowi
gcouldbeavalueoffxI6II0III6AIo
lyBIa
dIIo
lyCIIa
dIIIo
lyDIa
dIIIo
lyEIIIa
dIIICorrectA
swerA解析ChoiceIiscorrectbecausefx6whe
x3ChoiceIIisi
correctbecausetomakefx
f0xwouldhavetobe3But3is
otthesquareofa
i
tegerChoiceIIIisi
correctbecausetomakefx0xwouldhavetobe3butsquaresca
otbe
egativeThemi
imumvalueforx2iszerohe
cethemi
imumvalueforfx3
2Forhowma
yi
tegervaluesof
willthevalueoftheexpressio
4
7bea
i
tegergreatertha
1a
dlesstha
200
A48B49C50D51E52CorrectA
swerC解析14
7200
ca
be0or1
ca
otbe2ora
yother
egativei
tegerortheexpressio
4
7willbelesstha
1Thelargestvaluefor
willbea
i
teger2007419344825he
ce48The
umberofi
tegersbetwee
1a
d48i
clusiveis50
3I
thefollowi
gcorrectlyworkedadditio
sumABCa
dDreprese
tdiffere
tdigitsa
dallthedigitsi
thesumarediffere
tWhatisthesumofABCa
dD
A23B22C18D16E14CorrectA
swerB解析Firstyoumustrealizethatthesumoftwo2digit
umbersca
otbemorethat1989999Thereforei
thegive
problemDmustbe1Nowusetriala
derrortosatisfythesum5r