户的兴趣和偏好,给用户的兴趣建模,然后根据不同用户兴趣和偏好不同为其推荐能够满足他们兴趣和需求的信息。
在新闻领域,同样面临了“信息过载”问题,每天,来自世界各地包括政治、经济、文化、娱乐、生活、社会各种不同板块的新闻铺天盖地而来,各大门户网站无时无刻不再更新各个地方、各个领域发生的大事小事。绝大多数人都有阅读新闻的习惯,为了帮助人们快速而精准地找到自己感兴趣的新闻,不在无聊的新闻阅读上花费时间,研究好的个性化新闻推荐系统成为了学术界和企业界的热点。
二、国内外研究现状
当前的推荐技术主要分为协同过滤推荐、基于关联规则的推荐、基于内容的推荐以及混合推荐等协同过滤推荐是利用某个兴趣相投、拥有共同经验的群体的喜好来向使用者推荐其感兴趣的物品或信息,可以是利用当前用户与其他用户对部分项目的已知偏好数据来预测当前用户对其他项目的潜在偏好,或者利用用户对当前项目或者其他项目的已知偏好数据来预测其他用户对当前项目的潜在偏好1;关联规则挖掘是数据挖掘领域中一项重要的课题,它从大量数据中发现物品之间有趣的关联或相关联系。其核心思想是通过对已知数据的挖掘,发现大量数据中所蕴含的,满足一定支持度的规则模式及这些模式间的相互关系2。基于内容的推荐方法起源于信息检索和信息过滤的研究,是协同过滤推荐的延伸与发展。该方法对推荐对象进行内容上的挖掘与分析,基于用户历史行为获得用户的兴趣,并向用户推荐在内容上与其兴趣最匹配的物品3。混合推荐是将以上推荐方法按照不同的方式进行混合,取长补短,克服各自方法的不足。
21个性化推荐技术研究现状基于用户的协同过滤是个性化推荐中最古老的算法,该方法在1992年被提出,并应用于邮件过滤系统。在最早期的协同过滤推荐系统中,系统需要用户指定兴趣相似的近邻,只有在用户了解彼此间的兴趣爱好之后才能做出推荐因此,只适用于规模较小且相互熟悉的小型用户群例如同一办公室或研究小组,而不适合于电子商务、互联网这种用
f户群体庞大且相互陌生的环境4。之后出现了以GroupLe
s为代表的自动化的协同过滤推荐系统5,它允许用户使用评分等方式表达自己的兴趣偏好信息,系统根据兴趣相似的用户的评分信息为当前活动用户进行个性化推荐。自动化的协同过滤推荐系统不需用户指定相似用户,不需要用户之间相互了解,也不需要分析系统项目的内容,它能够自动寻找兴趣相似的用户,发现用户的潜在兴趣,具有较高的个性化和r